
test Documentation
[U+91CB][U+51FA] 1.1.5

test

2018 [U+5E74] 05 [U+6708] 21 [U+65E5]

Contents

1 [Please insert into preamble][Please insert into preamble] 3

2 [Pleaseinsertintopreamble][Pleaseinsertintopreamble] 5
2.1 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble] . 5
2.2 Channels [Please insert into preamble][Please insert into preamble][Please insert into preamble] . . 7
2.3 [Please insert into preamble][Please insert into preamble] . 12
2.4 Getting Started with Channels . 12
2.5 [Please insert into preamble][Please insert into preamble] . 25
2.6 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble][Please insert into preamble] . 29
2.7 [Please insert into preamble][Please insert into preamble] . 34
2.8 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble] . 35
2.9 [Please insert into preamble][Please insert into preamble] WebSocket [Please insert into pream-

ble][Please insert into preamble] . 38
2.10 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble][Please insert into preamble] . 39
2.11 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble][Please insert into preamble] . 41
2.12 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble][Please insert into preamble] . 42
2.13 [Please insert into preamble][Please insert into preamble] . 48
2.14 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble] . 50
2.15 ASGI ([Please insert into preamble][Please insert into preamble][Please insert into preamble][Please

insert into preamble][Please insert into preamble][Please insert into preamble][Please insert into
preamble][Please insert into preamble][Please insert into preamble]) [Please insert into pream-
ble][Please insert into preamble][Please insert into preamble][Please insert into preamble] 53

2.16 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert
into preamble] . 62

2.17 [Please insert into preamble][Please insert into preamble] . 62
2.18 [Please insert into preamble][Please insert into preamble][Please insert into preamble][Please insert

into preamble][Please insert into preamble][Please insert into preamble] 63

i

ii

test Documentation, [U+91CB][U+51FA] 1.1.5

Channels [U+662F][U+4E00][U+500B][U+8B93]Django [U+80FD][U+5920][U+8655][U+7406][U+66F4][U+591A]
HTTP [U+8ACB][U+6C42][U+7684][U+5C08][U+6848][U+FF0C][U+5305][U+542B] WebSockets
[U+548C]HTTP2, [U+53CA][U+6709][U+80FD][U+529B][U+5728][U+56DE][U+61C9][U+5DF2][U+7D93][U+88AB][U+9001][U+51FA][U+6642][U+53BB][U+57F7][U+884C][U+7A0B][U+5F0F][U+78BC][U+985E][U+4F3C][U+7E2E][U+5716][U+6216][U+662F][U+80CC][U+666F][U+8A08][U+7B97][U+3002]

[U+9019][U+662F][U+4E00][U+500B][U+5F88][U+5BB9][U+6613][U+900F][U+904E] Django
[U+8996][U+5716][U+6A21][U+578B][U+53BB][U+5EF6][U+4F38][U+7406][U+89E3][U+FF0C][U+4E5F][U+5F88][U+5BB9][U+6613][U+53BB][U+6574][U+5408][U+8207][U+767C][U+4F48][U+3002]

[U+9996][U+5148][U+FF0C][U+8B80][U+6211][U+5011]Channels [U+7684][U+6982][U+5FF5]
[U+6587][U+4EF6][U+5148][U+5F97][U+5230][U+4E00][U+500B] Channels
[U+6578][U+64DA][U+5E95][U+5C64][U+6A21][U+578B][U+7684][U+89C0][U+5FF5][U+8207][U+4ED6][U+5011][U+5982][U+4F55][U+5728]
Django [U+5167][U+4F7F][U+7528][U+3002]

[U+63A5][U+8457][U+FF0C][U+7814][U+8B80] Getting Started with Channels
[U+958B][U+59CB][U+4E86][U+89E3][U+5982][U+4F55][U+53EA][U+9700][U+8981]
30 [U+884C][U+7684][U+7A0B][U+5F0F][U+78BC][U+900F][U+904E] WebSockets
[U+555F][U+52D5][U+8207][U+57F7][U+884C][U+3002]

[U+5047][U+5982][U+4F60][U+5E0C][U+671B][U+5FEB][U+901F][U+7684][U+5C0E][U+89BD][U+FF0C][U+5F9E]
[U+7C21][U+77ED][U+8AAA][U+660E] [U+958B][U+59CB][U+5427][U+3002]

[U+5047][U+5982][U+4F60][U+6709][U+8208][U+8DA3][U+505A][U+51FA][U+4E9B][U+8CA2][U+737B][U+FF0C][U+8ACB][U+7814][U+8B80][U+6211][U+5011][U+7684]
[U+8CA2][U+737B] docs[U+FF01]

Contents 1

test Documentation, [U+91CB][U+51FA] 1.1.5

2 Contents

CHAPTER 1

[U+5C08][U+6848]

Channels [U+4F86][U+81EA][U+65BC][U+4E94][U+500B][U+5957][U+4EF6][U+FF1A]

• Channels[U+FF0C]the Django integration layer

• Daphne, the HTTP and Websocket termination server

• asgiref, the base ASGI library/memory backend

• asgi_redis, the Redis channel backend

• asgi_rabbitmq, the RabbitMQ channel backend

• asgi_ipc, the POSIX IPC channel backend

[U+9019][U+4EFD][U+6587][U+4EF6][U+5305][U+542B][U+7CFB][U+7D71][U+5F97][U+6574][U+9AD4][U+FF1B][U+53EF][U+4EE5][U+5F9E][U+500B][U+5225][U+7684][U+5132][U+85CF][U+5EAB][U+627E][U+5230][U+500B][U+5225][U+767C][U+4F48][U+7D00][U+9304][U+8207][U+8AAA][U+660E][U+3002]

3

https://github.com/django/channels/
https://github.com/django/daphne/
https://github.com/django/asgiref/
https://github.com/django/asgi_redis/
https://github.com/proofit404/asgi_rabbitmq/
https://github.com/django/asgi_ipc/

test Documentation, [U+91CB][U+51FA] 1.1.5

4 Chapter 1. [Please insert \PrerenderUnicode{\unichar{23560}} into preamble][Please insert
\PrerenderUnicode{\unichar{26696}} into preamble]

CHAPTER 2

[U+4E3B][U+984C]

[U+7C21][U+77ED][U+8AAA][U+660E]

[U+4EC0][U+9EBC][U+662F] Channels?

Channels extends Django to add a new layer that allows two important features:

• WebSocket handling, in a way very similar to normal views

• [U+80CC][U+666F][U+6E2C][U+8A66][U+FF0C][U+50CF][U+5176][U+5B83][U+7684]Django[U+4E00][U+6A23][U+5728][U+76F8][U+540C][U+4F3A][U+670D][U+5668][U+57F7][U+884C]

[U+9019][U+4E5F][U+5141][U+8A31][U+5176][U+5B83][U+7269][U+4EF6][U+FF0C][U+4F46][U+4F60][U+8981][U+5F9E][U+9019][U+4E9B][U+7269][U+4EF6][U+958B][U+59CB]

How?

[U+9019][U+5C07]Django[U+5206][U+6210]2[U+7A2E][U+904B][U+884C][U+985E][U+578B]:

• [U+4E00][U+500B][U+8655][U+7406]HTTP [U+548C] WebSockets

• One that runs views, websocket handlers and background tasks (consumers)

They communicate via a protocol called ASGI, which is similar to WSGI but runs over a network and allows for more
protocol types.

Channels does not introduce asyncio, gevent, or any other async code to your Django code; all of your business logic
runs synchronously in a worker process or thread.

[U+6211][U+5FC5][U+9808][U+6539][U+8B8A][U+6211][U+4F7F][U+7528]Django[U+7684][U+65B9][U+6CD5][U+FF1F]

No, all the new stuff is entirely optional. If you want it, however, you’ll change from running Django under a WSGI
server, to running:

• An ASGI server, probably Daphne

• Django worker servers, using manage.py runworker

5

http://github.com/django/daphne/

test Documentation, [U+91CB][U+51FA] 1.1.5

• Something to route ASGI requests over, like Redis.

Even when you’re running on Channels, it routes all HTTP requests to the Django view system by default, so it works
like before.

Channels[U+9084][U+7D66][U+6703][U+7D66][U+6211][U+4EC0][U+9EBC][U+FF1F]

[U+5176][U+4ED6][U+7279][U+5FB5][U+5305][U+62EC][U+FF1A]

• Easy HTTP long-poll support for thousands of clients at once

• Full session and auth support for WebSockets

• [U+81EA][U+52D5][U+7528][U+6236][U+767B][U+5165][U+4E3B][U+8981][U+61C9][U+7528][U+65BC]WebSockets[U+7684][U+7DB2][U+7AD9]cookies

• Built-in primitives for mass triggering of events (chat, live blogs, etc.)

• Zero-downtime deployment with browsers paused while new workers spin up

• Optional low-level HTTP control on a per-URL basis

• Extendability to other protocols or event sources (e.g. WebRTC, raw UDP, SMS)

[U+9019][U+53EF][U+4EE5][U+7E2E][U+653E][U+55CE][U+FF1F]

Yes, you can run any number of protocol servers (ones that serve HTTP and WebSockets) and worker servers (ones
that run your Django code) to fit your use case.

The ASGI spec allows a number of different channel layers to be plugged in between these two components, with
different performance characteristics, and it’s designed to allow both easy sharding as well as the ability to run separate
clusters with their own protocol and worker servers.

[U+70BA][U+4EC0][U+9EBC][U+5B83][U+4E0D][U+4F7F][U+7528][U+6211][U+7684][U+559C][U+597D][U+6392][U+5E8F][U+8A0A][U+606F][U+FF1F]

Channels is deliberately designed to prefer low latency (goal is a few milliseconds) and high throughput over guaran-
teed delivery, which doesn’t match some message queue designs.

Some features, like guaranteed ordering of messages, are opt-in as they incur a performance hit, but make it more
message queue like.

Do I need to worry about making all my code async-friendly?

No, all your code runs synchronously without any sockets or event loops to block. You can use async code within a
Django view or channel consumer if you like - for example, to fetch lots of URLs in parallel - but it doesn’t affect the
overall deployed site.

What version of Django does it work with?

You can install Channels as a library for Django >= 1.8. It has a few extra dependencies, but these will all be installed
if you use pip.

6 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

Official project

Channels is not in the Django core as initially planned, but it’s an official Django project since September 2016. More
information about Channels being adopted as an official project are available on the Django blog.

What do I read next?

Start off by reading about the concepts underlying Channels, and then move on to read our example-laden Getting
Started guide.

Channels [U+7684][U+6982][U+5FF5]

Django [U+7684][U+50B3][U+7D71][U+505A][U+6CD5][U+570D][U+7E5E][U+8457][U+8ACB][U+6C42][U+8207][U+56DE][U+61C9][U+FF1B][U+4E00][U+500B][U+8ACB][U+6C42][U+9032][U+4F86][U+FF0C]Django
[U+5C31][U+88AB][U+89F8][U+767C][U+4E26][U+670D][U+52D9][U+5B83][U+FF0C][U+7522][U+751F][U+4E00][U+500B][U+56DE][U+61C9][U+4E26][U+9001][U+51FA][U+FF0C][U+63A5][U+8457]
Django [U+96E2][U+958B][U+4E26][U+4E14][U+7B49][U+5F85][U+4E0B][U+4E00][U+500B][U+8ACB][U+6C42][U+3002]

[U+7576][U+4E92][U+806F][U+7DB2][U+7684][U+904B][U+4F5C][U+65B9][U+5F0F][U+53EA][U+662F][U+7C21][U+55AE][U+7684][U+700F][U+89BD][U+5668][U+4EA4][U+4E92][U+FF0C][U+9019][U+662F][U+500B][U+597D][U+65B9][U+6CD5][U+FF0C][U+4F46][U+73FE][U+4EE3][U+7684][U+7DB2][U+7AD9][U+5305][U+62EC][U+4E86]
WebSockets [U+548C]HTTP2 Server Push [U+7B49][U+9019][U+985E][U+7684][U+6280][U+8853][U+FF0C][U+5B83][U+5011][U+8B93][U+7DB2][U+7AD9][U+53EF][U+4EE5][U+5728][U+9019][U+7A2E][U+50B3][U+7D71][U+5F0F][U+7684][U+5FAA][U+74B0][U+4E4B][U+5916][U+9032][U+884C][U+6E9D][U+901A][U+3002]

[U+9664][U+6B64][U+4E4B][U+5916][U+FF0C][U+9084][U+6709][U+8A31][U+591A][U+975E][U+95DC][U+9375][U+6027][U+7684][U+4EFB][U+52D9][U+FF0C][U+662F][U+61C9][U+7528][U+7A0B][U+5F0F][U+53EF][U+4EE5][U+8F15][U+9B06][U+7684][U+5378][U+8F09][U+76F4][U+5230][U+6709][U+500B][U+56DE][U+61C9][U+88AB][U+9001][U+51FA][U+FF0C][U+4F8B][U+5982][U+628A][U+6771][U+897F][U+4FDD][U+5B58][U+5230][U+5FEB][U+53D6][U+6216][U+662F][U+70BA][U+65B0][U+4E0A][U+50B3][U+7684][U+5716][U+7247][U+7522][U+751F][U+7E2E][U+5716][U+3002]

[U+9019][U+4E9B][U+90FD][U+6539][U+8B8A][U+4E86] Django [U+57F7][U+884C]
“[U+4E8B][U+4EF6][U+5C0E][U+5411]” [U+7684][U+65B9][U+5F0F] -
[U+800C][U+975E][U+55AE][U+7D14][U+56DE][U+61C9][U+7D66][U+8ACB][U+6C42][U+FF0C][U+76F8][U+53CD][U+7684]
Django [U+56DE][U+61C9][U+5404][U+7A2E][U+4E8B][U+4EF6][U+4E26][U+50B3][U+9001][U+5230]
channel [U+4E0A][U+3002][U+9019][U+4E9B][U+4ECD][U+7136][U+6C92][U+6709][U+7121][U+6CD5][U+4FDD][U+6301][U+6301][U+4E45][U+7684][U+72C0][U+614B]
- [U+6BCF][U+4E00][U+7A2E][U+4E8B][U+4EF6][U+6A19][U+982D][U+FF0C][U+6216][U+662F]
[U+6D88][U+8CBB][U+8005] [U+6211][U+5011][U+7A31][U+4E4B][U+FF0C][U+662F][U+4E00][U+7A2E][U+50CF][U+662F][U+5404][U+81EA][U+7368][U+7ACB][U+547C][U+53EB][U+7684][U+8996][U+5716][U+65B9][U+5F0F][U+3002]

[U+8B93][U+6211][U+5011][U+5148][U+770B][U+770B][U+4EC0][U+9EBC][U+662F] chan-
nels[U+3002]

[U+4EC0][U+9EBC][U+662F] channel?

[U+4E0D][U+4EE4][U+4EBA][U+610F][U+5916][U+7684][U+FF0C][U+6838][U+5FC3][U+7CFB][U+7D71][U+5FC5][U+9808][U+662F][U+4E00][U+500B][U+7A31][U+70BA][U+8CC7][U+6599][U+7D50][U+69CB][U+7684]
channel[U+3002][U+4EC0][U+9EBC][U+662F] channel? [U+5B83][U+662F][U+4E00][U+500B][U+6709][U+5E8F][U+5217][U+7684][U+FF0C][U+5148][U+9032][U+5148][U+51FA][U+4F47][U+5217][U+FF0C][U+5176][U+4E2D][U+6D88][U+606F][U+5230][U+671F][U+4E26][U+4E14][U+4E00][U+6B21][U+53EA][U+5411][U+4E00][U+500B]
listener [U+50B3][U+9001][U+3002]

[U+4F60][U+53EF][U+4EE5][U+60F3][U+50CF][U+985E][U+4F3C][U+4E00][U+500B][U+4EFB][U+52D9][U+7684][U+4F47][U+5217]
- [U+751F][U+7522][U+8005] [U+5C07][U+8A0A][U+606F][U+50B3][U+5230] chan-
nel[U+FF0C][U+63A5][U+8457][U+63D0][U+4F9B][U+4E00][U+500B][U+53EA][U+80FD][U+7D66][U+67D0][U+4E00][U+4F4D]
[U+6D88][U+8CBB][U+8005] [U+76E3][U+807D][U+7684] channel[U+3002]

[U+6211][U+5011][U+53EF][U+4EE5][U+8AAA] [U+81F3][U+5C11][U+4E00][U+6B21]
[U+4E00][U+500B][U+6D88][U+8CBB][U+8005][U+6216][U+662F][U+6C92][U+6709][U+4EBA][U+5F97][U+5230][U+8A0A][U+606F]
([U+6211][U+5011][U+9019][U+6A23][U+8AAA][U+FF0C][U+662F][U+5047][U+8A2D][U+9019][U+500B]
channel [U+767C][U+751F] crash)[U+3002][U+9019][U+500B][U+5099][U+9078][U+65B9][U+6848][U+662F]
[U+81F3][U+5C11][U+4E00][U+6B21][U+FF0C][U+6703][U+6709][U+4E00][U+500B][U+6D88][U+8CBB][U+8005][U+7372][U+5F97][U+6D88][U+606F][U+FF0C][U+4F46][U+5B83][U+5247][U+6703][U+88AB][U+767C][U+9001][U+5230][U+591A][U+500B][U+FF0C][U+7576][U+767C][U+751F]
crash [U+6642][U+3002][U+9019][U+4E0D][U+662F][U+6211][U+5011][U+60F3][U+8981][U+7684][U+6B0A][U+8861][U+65B9][U+5F0F][U+3002]

[U+9019][U+88E1][U+9084][U+6709][U+4E00][U+4E9B][U+5176][U+5B83][U+7684][U+9650][U+5236]
- [U+8A0A][U+606F][U+901A][U+5E38][U+88AB][U+5EFA][U+7ACB][U+70BA][U+5E8F][U+5217][U+7684][U+578B][U+614B][U+FF0C][U+4FDD][U+6301][U+5728][U+4E00][U+5B9A][U+5927][U+5C0F][U+7684][U+9650][U+5236]
- [U+7576][U+4F60][U+6709][U+9AD8][U+512A][U+5148][U+6B0A][U+7684][U+4F7F][U+7528][U+6642][U+4F60][U+4E0D][U+9700][U+8981][U+64D4][U+5FC3][U+9019][U+4E9B][U+5BE6][U+884C][U+7684][U+7D30][U+89E3][U+3002]

2.2. Channels [Please insert \PrerenderUnicode{\unichar{30340}} into preamble][Please insert
\PrerenderUnicode{\unichar{27010}} into preamble][Please insert
\PrerenderUnicode{\unichar{24565}} into preamble]

7

https://www.djangoproject.com/weblog/2016/sep/09/channels-adopted-official-django-project/

test Documentation, [U+91CB][U+51FA] 1.1.5

channels [U+662F][U+5177][U+5099][U+5BB9][U+91CF][U+7684][U+FF0C][U+6240][U+4EE5][U+8A31][U+591A][U+751F][U+7522][U+8005][U+53EF][U+4EE5][U+5C07][U+5927][U+91CF][U+6D88][U+606F][U+5BEB][U+5165][U+6C92][U+6709][U+6D88][U+8CBB][U+8005][U+7684]
channel [U+4E2D][U+FF0C][U+6D88][U+8CBB][U+8005][U+53EF][U+4EE5][U+96A8][U+5F8C][U+518D][U+958B][U+59CB][U+53D6][U+5F97][U+9019][U+4E9B][U+670D][U+52D9][U+8207][U+4F47][U+5217][U+7684][U+8A0A][U+606F][U+3002]

[U+51FA][U+5982][U+4F60][U+4F7F][U+7528] channels in Go: GO channels [U+548C] Django
[U+76F8][U+4F3C][U+3002][U+4F46][U+95DC][U+9375][U+4E0D][U+540C][U+4E4B][U+8655][U+5728]
Django channels [U+662F][U+4E00][U+7A2E] network-transparent; [U+6211][U+5011][U+63D0][U+4F9B][U+4E00][U+7A2E]
channels [U+5BE6][U+73FE][U+5B58][U+53D6][U+7DB2][U+8DEF][U+8B93][U+6D88][U+8CBB][U+8005][U+8207][U+751F][U+7522][U+8005][U+53EF][U+4EE5][U+57F7][U+884C][U+5728][U+4E0D][U+540C][U+7684][U+884C][U+7A0B][U+6216][U+662F][U+4E0D][U+540C][U+7684][U+6A5F][U+5668][U+3002]

[U+5728][U+7DB2][U+8DEF][U+5167][U+FF0C][U+6211][U+5011][U+5B9A][U+7FA9][U+540D][U+7A31][U+5B57][U+4E32][U+5B9A][U+7FA9]
channels [U+552F][U+4E00][U+6027] - [U+4F60][U+53EF][U+4EE5][U+5F9E][U+4EFB][U+4F55][U+6A5F][U+5668][U+9023][U+7D50][U+540C][U+6A23][U+7684]
channel [U+5F8C][U+53F0][U+7136][U+5F8C][U+50B3][U+9001][U+7D66][U+4EFB][U+4F55][U+540D][U+7A31][U+7684]
channel[U+3002][U+5047][U+8A2D][U+5169][U+500B][U+4E0D][U+540C][U+6A5F][U+5668][U+540C][U+6642][U+5BEB][U+5165]
http.request channel[U+FF0C][U+4ED6][U+5011][U+6703][U+5BEB][U+5165][U+540C][U+6A23]
channel[U+3002]

[U+6211][U+5011][U+5982][U+4F55][U+4F7F][U+7528] channels?

[U+6240][U+4EE5][U+5982][U+4F55][U+8B93] Django [U+4F7F][U+7528][U+9019][U+4E9B]
channels? [U+5728] Django [U+5167][U+4F60][U+53EF][U+4EE5][U+5BEB][U+4E00][U+500B]
consume to channel [U+7684][U+51FD][U+5F0F]:

def my_consumer(message):
pass

[U+63A5][U+8457][U+5728] channel [U+8DEF][U+7531][U+5167][U+6307][U+6D3E][U+4E00][U+500B]
channel [U+7D66][U+4ED6]:

channel_routing = {
"some-channel": "myapp.consumers.my_consumer",

}

[U+9019][U+88E1][U+6307][U+5C0D][U+65BC][U+6240][U+6709][U+5728] channel
[U+4E0A][U+8A0A][U+606F][U+FF0C]Django [U+5C07][U+6703][U+547C][U+53EB][U+4E00][U+500B][U+4F34][U+96A8][U+8A0A][U+606F][U+52FF][U+4EF6][U+7684][U+6D88][U+8CBB][U+8005][U+51FD][U+5F0F]([U+8A0A][U+606F][U+7269][U+4EF6][U+6703][U+6709][U+4E00][U+500B]”[U+5167][U+5BB9]”[U+5C6C][U+6027][U+FF0C][U+9019][U+500B][U+7269][U+4EF6][U+6703][U+4E00][U+76F4][U+662F]
dict [U+7684][U+8CC7][U+6599][U+FF0C][U+53E6][U+4E00][U+500B] “channel”
[U+5C6C][U+6027][U+5247][U+662F][U+5F9E][U+54EA][U+88E1][U+4F86][U+7684] chan-
nel[U+FF0C][U+4EE5][U+53EF][U+4EE5][U+662F][U+540C][U+6A23][U+7684])[U+3002]

[U+4E26][U+4E0D][U+662F][U+8B93]Django [U+904B][U+4F5C][U+5728][U+50B3][U+7D71][U+7684]
request-response [U+6A21][U+5F0F][U+FF0C]Channels [U+6539][U+8B8A] Django
[U+4F7F][U+5176][U+53EF][U+4EE5][U+904B][U+4F5C][U+5728][U+4E00][U+500B] worker
mode - [U+5B83][U+53EF][U+4EE5][U+900F][U+904E][U+6D88][U+8CBB][U+6307][U+7684][U+6307][U+6D3E][U+53BB][U+76E3][U+807D][U+6240][U+6709][U+7684]
channels[U+FF0C][U+7576][U+8A0A][U+606F][U+62B5][U+9054][U+6642][U+FF0C][U+76F8][U+95DC][U+6D88][U+8CBB][U+8005][U+624D][U+57F7][U+884C][U+3002][U+56E0][U+6B64][U+548C][U+5728]
WSGI server [U+4E0A][U+55AE][U+4E00][U+884C][U+7A0B][U+4E0D][U+540C][U+FF0C]Django
[U+5206][U+5728][U+4E09][U+500B][U+7368][U+7ACB][U+7684] layer
[U+4E2D][U+57F7][U+884C]:

• [U+4ECB][U+9762][U+670D][U+52D9][U+FF0C][U+505A][U+70BA] Django
[U+8207][U+5916][U+9762][U+4E16][U+754C][U+7684][U+6E9D][U+901A][U+3002][U+5B83][U+5305][U+542B][U+4E00][U+500B]
WSGI adapter [U+50CF][U+662F][U+4E00][U+500B] separate WebSocket server -
[U+5728][U+5F8C][U+9762][U+4ECB][U+7D39][U+3002]

• channel [U+5F8C][U+7AEF][U+FF0C][U+7528][U+4F86][U+7D44][U+5408][U+63D2][U+5165][U+7684]
python [U+7A0B][U+5F0F][U+78BC][U+548C][U+4E00][U+500B][U+8CC7][U+6599][U+5EAB]
(e.g. Redis, or shared memory segment) [U+8CA0][U+8CAC][U+50B3][U+8F38][U+6D88][U+606F][U+3002]

• workers[U+FF0C][U+76E3][U+807D][U+6240][U+6709][U+76F8][U+95DC][U+7684] chan-
nels[U+FF0C][U+7576][U+8A0A][U+606F][U+6E96][U+5099][U+597D][U+6642][U+57F7][U+884C][U+6D88][U+8CBB][U+8005][U+7A0B][U+5F0F][U+78BC][U+3002]

8 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

https://gobyexample.com/channels

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+9019][U+770B][U+8D77][U+4F86][U+76F8][U+5C0D][U+7C21][U+55AE][U+FF0C][U+4F46][U+9019][U+662F][U+8A2D][U+8A08][U+7684][U+4E00][U+90E8][U+5206];
[U+800C][U+4E0D][U+662F][U+5617][U+8A66][U+4E26][U+64C1][U+6709][U+5B8C][U+6574][U+7684][U+7570][U+6B65][U+67B6][U+69CB][U+FF0C][U+6211][U+5011][U+53EA][U+662F][U+5F15][U+5165][U+4E86][U+4E00][U+500B][U+6BD4]
Django [U+8996][U+5716][U+5448][U+73FE][U+7684][U+66F4][U+8907][U+96DC][U+7684][U+62BD][U+8C61][U+3002]

[U+4E00][U+500B][U+8996][U+5716][U+63D0][U+4F9B][U+4E00][U+500B][U+8ACB][U+6C42][U+8207][U+56DE][U+50B3][U+4E00][U+500B][U+56DE][U+61C9][U+FF1B][U+4E00][U+500B][U+6D88][U+8CBB][U+8005][U+5E36][U+4F86][U+4E00][U+500B]
channel [U+8A0A][U+606F][U+8207][U+5BEB][U+51FA][U+4E00][U+500B] 0 [U+5230]
[U+5176][U+4ED6][U+66F4][U+591A][U+7684] channel [U+8A0A][U+606F][U+3002]

[U+73FE][U+5728][U+8B93][U+6211][U+5011][U+91DD][U+5C0D] requests
[U+5EFA][U+7ACB][U+4E00][U+500B] channel ([U+7A31][U+70BA] http.
request)[U+FF0C][U+8207][U+4E00][U+500B][U+91DD][U+5C0D][U+6BCF][U+4E00][U+500B][U+5BA2][U+6236][U+7AEF][U+56DE][U+61C9][U+7684]
channel (e.g. http.response.04F2h2Fd)[U+FF0C][U+5176][U+4E2D][U+56DE][U+61C9] channel
[U+662F][U+4E00][U+500B][U+8ACB][U+6C42][U+8A0A][U+606F][U+7684][U+5C6C][U+6027](reply_channel)[U+3002][U+99AC][U+4E0A][U+FF0C][U+4E00][U+500B][U+8996][U+5716][U+50C5][U+70BA][U+5176][U+4ED6][U+6D88][U+8CBB][U+8005][U+7684][U+4E00][U+4F8B]:

Listens on http.request
def my_consumer(message):

Decode the request from message format to a Request object
django_request = AsgiRequest(message)
Run view
django_response = view(django_request)
Encode the response into message format
for chunk in AsgiHandler.encode_response(django_response):

message.reply_channel.send(chunk)

[U+5BE6][U+969B][U+4E0A][U+FF0C][U+9019][U+662F]Channels [U+5982][U+4F55][U+904B][U+4F5C][U+3002][U+754C][U+9762][U+670D][U+52D9][U+6703][U+5C07][U+5C0D][U+61C9][U+7684][U+4ECB][U+9762](HTTP,
WebSocket, etc.)[U+8F49][U+63DB][U+9023][U+7D50][U+5230][U+5C0D][U+61C9][U+8A0A][U+606F][U+FF0C][U+63A5][U+8457][U+4F60][U+6703][U+7DE8][U+5BEB]
worker [U+8655][U+7406][U+9019][U+4E9B][U+8A0A][U+606F][U+3002][U+901A][U+5E38][U+4F60][U+96E2][U+958B][U+4E00][U+500B][U+6B63][U+5E38]
HTTP [U+5347][U+7D1A][U+6210]Django [U+7684][U+5167][U+7F6E][U+6D88][U+8CBB][U+8005][U+4E26][U+4E14][U+5D4C][U+5165][U+8996][U+5716]/[U+6A21][U+677F][U+7CFB][U+7D71][U+FF0C][U+4F46][U+4F60][U+53EF][U+4EE5][U+7528][U+8907][U+5BEB][U+65B9][U+5F0F][U+53BB][U+589E][U+52A0][U+529F][U+80FD][U+5047][U+5982][U+4F60][U+9858][U+610F][U+3002]

[U+7136][U+800C][U+FF0C][U+95DC][U+9375][U+7684][U+90E8][U+5206][U+662F][U+4F60][U+53EF][U+4EE5][U+5728][U+4EFB][U+4F55]
event [U+56DE][U+61C9][U+6642][U+57F7][U+884C][U+7A0B][U+5F0F][U+78BC]([U+63A5][U+8457][U+53EF][U+4EE5][U+5728]
channels [U+9001][U+51FA]) - [U+4E14][U+5305][U+542B][U+4F60][U+81EA][U+5DF1][U+6240][U+5275][U+5EFA][U+7684][U+3002][U+4F60][U+53EF][U+4EE5][U+5728]
model [U+5132][U+5B58][U+FF0C][U+5728][U+5176][U+4ED6][U+8A0A][U+606F][U+9032][U+5165][U+6642][U+6216][U+662F][U+7576][U+5176][U+4ED6][U+5F9E][U+7A0B][U+5F0F][U+78BC][U+8DEF][U+5F91][U+9032][U+5165]
views [U+6216][U+662F] forms [U+6642][U+89F8][U+767C][U+3002][U+9019][U+500B][U+65B9][U+6CD5][U+5C0D][U+65BC]
push-style [U+7684][U+7A0B][U+5F0F][U+78BC][U+5F88][U+6709][U+7528] -
[U+5728][U+90A3][U+4F7F][U+7528] WebSockets [U+6216] HTTP long-polling
[U+6642][U+901A][U+77E5][U+5BA2][U+6236][U+7684][U+66F4][U+6539]([U+804A][U+5929][U+4E2D][U+7684][U+6D88][U+606F][U+FF0C][U+6216][U+8005][U+5728][U+7BA1][U+7406][U+54E1][U+7684][U+5BE6][U+6642][U+66F4][U+65B0][U+4F5C][U+70BA][U+53E6][U+4E00][U+500B][U+7528][U+6236][U+7DE8][U+8F2F][U+7684][U+6771][U+897F])[U+3002]

Channel [U+985E][U+578B]

[U+9019][U+88E1][U+6709][U+5169][U+500B] channels [U+5BE6][U+969B][U+4E0A][U+7684][U+4E3B][U+8981][U+6709][U+5169][U+7A2E][U+7528][U+9014][U+3002][U+7B2C][U+4E00][U+FF0C][U+4E14][U+662F][U+6BD4][U+8F03][U+660E][U+986F][U+7684][U+4E00][U+7A2E][U+662F][U+5206][U+6D3E][U+5DE5][U+4F5C][U+7D66][U+6D88][U+8CBB][U+8005]
- [U+4E00][U+500B][U+8A0A][U+606F][U+88AB][U+5F97][U+5230][U+8207][U+65B0][U+589E][U+5230]
channel, [U+63A5][U+8457][U+4EFB][U+4F55][U+4E00][U+500B] worker
[U+53EF][U+4EE5][U+53D6][U+5F97][U+4E26][U+4E14][U+57F7][U+884C][U+6D88][U+8CBB][U+8005][U+3002]

[U+7B2C][U+4E8C][U+7A2E][U+901A][U+9053][U+7528][U+9014][U+662F][U+7528][U+65BC][U+56DE][U+8986][U+3002][U+503C][U+5F97][U+6CE8][U+610F][U+662F][U+4ED6][U+5011][U+53EA][U+6709][U+505A][U+4E00][U+4EF6][U+4E8B][U+5C31][U+662F][U+76E3][U+807D]
-[U+4ECB][U+9762][U+670D][U+52D9][U+3002][U+6BCF][U+4E00][U+500B][U+56DE][U+61C9][U+7684]
channel [U+662F][U+5404][U+81EA][U+7368][U+7ACB][U+7684][U+540D][U+7A31][U+4E14][U+7576][U+5176]
client [U+7AEF][U+88AB][U+7D42][U+6B62][U+FF0C][U+5FC5][U+9808][U+8DEF][U+7531][U+56DE][U+754C][U+9762][U+670D][U+52D9][U+3002]

[U+9019][U+4E0D][U+662F][U+5DE8][U+5927][U+5DEE][U+7570] -
[U+4ED6][U+5011][U+80FD][U+7136][U+6839][U+64DA][U+6838][U+5FC3][U+5B9A][U+7FA9]
channel [U+884C][U+70BA] - [U+4F46][U+7576][U+6211][U+5011][U+60F3][U+64F4][U+5927][U+898F][U+6A21][U+6642][U+6703][U+51FA][U+73FE][U+4E00][U+4E9B][U+554F][U+984C][U+3002][U+6211][U+5011][U+53EF][U+4EE5][U+6109][U+5FEB][U+7684][U+6839][U+64DA][U+53E2][U+96C6][U+96A8][U+6A5F][U+9644][U+8F09][U+5E73][U+8861][U+670D][U+52D9][U+6B63][U+5E38][U+7684]
channels [U+548C] workers - [U+6700][U+7D42][U+FF0C][U+4EFB][U+4F55] worker
[U+53EF][U+4EE5][U+8655][U+7406][U+8A0A][U+606F] - [U+4F46][U+56DE][U+61C9] chan-
nels [U+5FC5][U+9808][U+50B3][U+9001][U+8A0A][U+606F][U+5230][U+5B83][U+5011][U+6B63][U+5728][U+76E3][U+807D][U+7684]
channel [U+670D][U+52D9][U+3002]

2.2. Channels [Please insert \PrerenderUnicode{\unichar{30340}} into preamble][Please insert
\PrerenderUnicode{\unichar{27010}} into preamble][Please insert
\PrerenderUnicode{\unichar{24565}} into preamble]

9

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+5C0D][U+65BC][U+9019][U+500B][U+7406][U+7531][U+FF0C]Channels
[U+5C0D][U+6B64][U+5340][U+5206][U+51FA][U+5169][U+7A2E][U+4E0D][U+540C][U+985E][U+578B][U+7684]
channel [U+578B][U+614B][U+FF0C][U+4E14][U+901A][U+904E][U+4E00][U+500B][U+5305][U+542B]
! [U+7684][U+5B57][U+7B26][U+540D][U+7A31][U+4F86][U+8868][U+793A][U+4E00][U+500B]
[U+56DE][U+61C9] channel[U+3002] -e.g. http.response!f5G3fE21f[U+3002][U+4E00][U+822C]
channels [U+4E0D][U+6703][U+5305][U+542B][U+5B83][U+FF0C][U+4F46][U+662F][U+6703][U+8207][U+5176][U+4ED6][U+4F11][U+606F][U+4E2D][U+7684][U+56DE][U+8986]
channel [U+540D][U+7A31][U+4E00][U+8D77][U+FF0C][U+5B83][U+5011][U+901A][U+5E38][U+5305][U+542B][U+5B57][U+7B26]
a-z A-Z 0-9 - _[U+FF0C][U+4E14][U+5FC5][U+9808][U+5C11][U+65BC] 200
[U+5B57][U+7B26][U+7684][U+9577][U+5EA6][U+3002]

[U+9019][U+88E1][U+53EF][U+4EE5][U+7528][U+9078][U+64C7][U+5F8C][U+7AEF][U+5BE6][U+73FE][U+4F86][U+7406][U+89E3][U+4ED6]
- [U+7562][U+7ADF][U+FF0C][U+9019][U+53EA][U+5C0D][U+65BC] Scale
[U+91CD][U+8981][U+FF0C][U+56E0][U+70BA][U+9019][U+908A][U+4F60][U+60F3][U+8981][U+5206][U+5272][U+5169][U+7A2E][U+4E0D][U+540C][U+985E][U+578B]
— [U+4F46][U+662F][U+5B83][U+4ECD][U+7136][U+5B58][U+5728][U+3002][U+5047][U+5982][U+4F60][U+662F][U+64B0][U+5BEB][U+5F8C][U+7AEF][U+6216][U+662F][U+4ECB][U+9762][U+670D][U+52D9][U+60F3][U+8981][U+66F4][U+591A][U+5F48][U+6027][U+8207][U+638C][U+63A7]
channel types [U+53EF][U+4EE5][U+53C3][U+8003] Scaling Up[U+3002]

[U+7FA4][U+7D44]

[U+56E0][U+70BA] channels [U+53EA][U+80FD][U+50B3][U+9001][U+5230][U+55AE][U+4E00][U+500B]
listener [U+7121][U+6CD5][U+505A][U+5EE3][U+64AD][U+FF1B][U+5047][U+5982][U+4F60][U+5E0C][U+671B][U+50B3][U+9001][U+4E00][U+500B][U+8A0A][U+606F][U+7D66][U+4EFB][U+610F][U+7684][U+7D42][U+7AEF][U+7FA4][U+7D44][U+FF0C][U+4F60][U+9700][U+8981][U+5C0D][U+767C][U+9001][U+7684]
channels [U+7684][U+56DE][U+8986][U+4FDD][U+6301][U+8FFD][U+8E64][U+3002]

[U+5047][U+8A2D][U+6211][U+6709][U+4E00][U+500B][U+5BE6][U+6CC1][U+90E8][U+843D][U+683C][U+FF0C][U+7576][U+6709][U+4E00][U+500B][U+65B0][U+7684]
post [U+5132][U+5B58][U+4E86][U+FF0C][U+6211][U+5E0C][U+671B][U+63A8][U+9001][U+51FA][U+53BB][U+66F4][U+65B0][U+FF0C][U+6211][U+53EF][U+4EE5][U+91DD][U+5C0D]
post_save [U+8A0A][U+865F][U+8A3B][U+518A][U+4E00][U+500B][U+6A19][U+982D][U+4E26][U+4E14][U+4FDD][U+6301][U+4E00][U+7D44]
channels ([U+9019][U+88E1][U+FF0C][U+4F7F][U+7528]Redis) [U+53BB][U+9001][U+51FA][U+4E00][U+500B][U+66F4][U+65B0]:

redis_conn = redis.Redis("localhost", 6379)

@receiver(post_save, sender=BlogUpdate)
def send_update(sender, instance, **kwargs):

Loop through all reply channels and send the update
for reply_channel in redis_conn.smembers("readers"):

Channel(reply_channel).send({
"text": json.dumps({

"id": instance.id,
"content": instance.content

})
})

Connected to websocket.connect
def ws_connect(message):

Add to reader set
redis_conn.sadd("readers", message.reply_channel.name)

[U+96D6][U+7136][U+9019][U+6A23][U+53EF][U+4EE5][U+904B][U+4F5C][U+FF0C][U+4F46][U+6709][U+4E00][U+500B][U+5C0F][U+7684][U+554F][U+984C]
- [U+7576][U+4ED6][U+5011][U+65B7][U+7DDA][U+6642][U+6211][U+5011][U+7121][U+6CD5][U+5F9E][U+9019][U+500B]
readers [U+8A2D][U+5B9A][U+79FB][U+9664][U+9023][U+63A5][U+3002][U+6211][U+5011][U+53EF][U+4EE5][U+589E][U+52A0][U+4E00][U+500B][U+6D88][U+8CBB][U+8005][U+FF0C][U+5B83][U+53EF][U+4EE5][U+900F][U+904E][U+76E3][U+807D]
websocket.disconnect [U+4F86][U+8655][U+7406][U+FF0C][U+4F46][U+6211][U+5011][U+4E5F][U+6703][U+9700][U+8981][U+5728][U+4ECB][U+9762][U+670D][U+52D9][U+6709][U+4E00][U+4E9B][U+5230][U+671F][U+985E][U+5225][U+88AB][U+8FEB][U+9000][U+51FA][U+6216][U+5931][U+53BB][U+96FB][U+6E90][U+FF0C][U+7136][U+5F8C][U+624D][U+80FD][U+767C][U+9001][U+65B7][U+958B][U+4FE1][U+865F]
- [U+4F60][U+7684][U+7A0B][U+5F0F][U+78BC][U+5C07][U+6C38][U+9060][U+4E0D][U+6703][U+770B][U+898B][U+4EFB][U+4F55][U+65B7][U+7DDA][U+7684][U+63D0][U+793A][U+FF0C][U+4F46]
reply channel [U+662F][U+4E00][U+500B][U+5B8C][U+5168][U+7121][U+6548][U+7684][U+8A0A][U+606F][U+FF0C][U+4F60][U+767C][U+9001][U+5230][U+90A3][U+908A][U+7684][U+6771][U+897F][U+5C07][U+6703][U+505C][U+7559][U+76F4][U+5230][U+904E][U+671F][U+3002]

[U+56E0][U+70BA][U+9019][U+500B] channels [U+7684][U+57FA][U+790E][U+8A2D][U+8A08][U+662F][U+7121][U+72C0][U+614B][U+7684][U+FF0C][U+5047][U+8A2D]
channel [U+7684][U+4ECB][U+9762][U+670D][U+52D9][U+6D88][U+5931] chan-
nel server [U+6C92][U+6709][U+4EFB][U+4F55] “closing” [U+6982][U+5FF5] -

10 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+7562][U+7ADF][U+FF0C]channel [U+610F][U+5473][U+8457][U+4FDD][U+7559][U+8A0A][U+606F][U+76F4][U+5230][U+4E00][U+500B][U+6D88][U+8CBB][U+8005][U+4F86][U+81E8]([U+67D0][U+4E9B][U+4ECB][U+9762][U+670D][U+52D9][U+7684][U+985E][U+5225][U+FF0C]
e.g. [U+4E00][U+500B] SMS [U+9598][U+9053][U+FF0C][U+7406][U+8AD6][U+4E0A][U+53EF][U+4EE5][U+670D][U+52D9][U+5F9E][U+4EFB][U+610F][U+7684][U+4ECB][U+9762][U+670D][U+52D9][U+7684][U+4EFB][U+4F55][U+7D42][U+7AEF])[U+3002]

[U+51FA][U+5011][U+4E0D][U+7279][U+5225][U+95DC][U+5FC3][U+4E00][U+500B][U+65B7][U+7DDA][U+7684]
client [U+6C92][U+6709][U+53D6][U+5F97][U+767C][U+9001][U+7FA4][U+7D44][U+7684][U+8A0A][U+606F]
- [U+7562][U+7ADF][U+5B83][U+5DF2][U+7D93][U+65B7][U+7DDA] -
[U+4F46][U+662F][U+6211][U+5011][U+95DC][U+5FC3][U+7779][U+585E][U+901A][U+9053][U+5F8C][U+7AEF][U+8FFD][U+8E64][U+90A3][U+4E9B][U+5DF2][U+7D93][U+4E0D][U+518D][U+5B58][U+5728][U+7684]
client ([U+4E5F][U+53EF][U+80FD][U+5728][U+56DE][U+8986] channel
[U+767C][U+751F][U+885D][U+7A81][U+548C][U+767C][U+9001][U+4E0D][U+5177][U+610F][U+7FA9][U+7684][U+8A0A][U+606F][U+FF0C][U+96D6][U+7136][U+6709][U+53EF][U+80FD][U+662F][U+5728][U+5E7E][U+9031][U+4E4B][U+5F8C])

[U+73FE][U+5728][U+FF0C][U+6211][U+5011][U+53EF][U+4EE5][U+56DE][U+5230][U+4E0A][U+9762][U+7684][U+7BC4][U+4F8B][U+4E26][U+4E14][U+6DFB][U+52A0][U+4E00][U+500B][U+904E][U+671F][U+7684][U+96C6][U+5408][U+4E26][U+4E14][U+6301][U+7E8C][U+8FFD][U+8E64][U+76F4][U+5230][U+4E00][U+500B][U+5230][U+671F][U+6642][U+9593][U+FF0C][U+4F46][U+4EC0][U+9EBC][U+624D][U+662F][U+4E00][U+500B][U+8B93][U+4F60][U+589E][U+52A0][U+7A0B][U+5F0F][U+78BC][U+5230]
boilerplate [U+7684][U+6A21][U+677F][U+67B6][U+69CB][U+5462][U+FF1F]
[U+76F8][U+53CD][U+FF0C]Channels [U+6539][U+5584][U+9019][U+500B][U+4E00][U+500B][U+6838][U+5FC3][U+7684][U+62BD][U+8C61][U+6982][U+5FF5][U+7A31][U+70BA]
Goups:

@receiver(post_save, sender=BlogUpdate)
def send_update(sender, instance, **kwargs):

Group("liveblog").send({
"text": json.dumps({

"id": instance.id,
"content": instance.content

})
})

Connected to websocket.connect
def ws_connect(message):

Add to reader group
Group("liveblog").add(message.reply_channel)
Accept the connection request
message.reply_channel.send({"accept": True})

Connected to websocket.disconnect
def ws_disconnect(message):

Remove from reader group on clean disconnect
Group("liveblog").discard(message.reply_channel)

[U+73FE][U+5728] do groups [U+4E0D][U+50C5][U+6709][U+4ED6][U+5011][U+81EA][U+5DF1][U+7684]
send() [U+65B9][U+6CD5]([U+5F8C][U+7AEF][U+53EF][U+4EE5][U+63D0][U+4F9B][U+6709][U+6548][U+7684][U+5BE6][U+73FE])[U+FF0C][U+5B83][U+5011][U+540C][U+6A23][U+53EF][U+4EE5][U+81EA][U+52D5][U+5316][U+7684][U+7BA1][U+7406][U+5230][U+671F][U+7684][U+7FA4][U+7D44][U+6210][U+54E1]
- [U+7576][U+9019][U+500B] channel [U+958B][U+59CB][U+6709][U+8A0A][U+606F][U+6642][U+76F4][U+5230][U+672A][U+88AB][U+6D88][U+8CBB][U+4E14][U+5230][U+671F][U+6642][U+FF0C][U+6211][U+5011][U+9032][U+5165][U+6240][U+6709][U+7FA4][U+7D44][U+4E26][U+4E14][U+79FB][U+9664][U+9019][U+4E9B][U+8A0A][U+606F][U+3002][U+7576][U+7136][U+FF0C][U+5047][U+5982][U+53EF][U+4EE5][U+4F60][U+4ECD][U+7136][U+61C9][U+8A72][U+79FB][U+9664][U+7FA4][U+7D44][U+5728][U+65B7][U+958B][U+9023][U+7DDA][U+6642];
[U+56E0][U+70BA][U+67D0][U+4E9B][U+539F][U+56E0][U+FF0C][U+65B7][U+7DDA][U+6642][U+8A0A][U+606F][U+6C92][U+6709][U+8FA6][U+6CD5][U+6210][U+529F][U+50B3][U+9001][U+FF0C][U+65B7][U+958B][U+9023][U+7DDA][U+7684][U+7A0B][U+5F0F][U+78BC][U+662F][U+6293][U+53D6][U+9019][U+500B][U+4F8B][U+5916][U+3002]

Groups [U+4E00][U+822C][U+4F86][U+8AAA][U+5C0D][U+65BC][U+56DE][U+61C9] chan-
nels [U+662F][U+6709][U+7528][U+7684]([U+5305][U+542B][U+5B57][U+7B26] [U+FF01]),
[U+5047][U+5982][U+4F60][U+60F3][U+5C07][U+4ED6][U+5011][U+4F7F][U+7528][U+65BC][U+4E00][U+822C][U+7684]
channels [U+662F][U+53EF][U+884C][U+7684][U+FF0C][U+56E0][U+70BA][U+5B83][U+5011][U+90FD][U+662F][U+552F][U+4E00][U+7684][U+5BA2][U+6236][U+7AEF][U+3002]

[U+4E0B][U+4E00][U+6B65]

[U+9019][U+662F][U+4E00][U+500B][U+9AD8][U+7D1A][U+7684] channels [U+548C] groups
[U+6982][U+89BD][U+8207][U+5982][U+4F55][U+958B][U+59CB][U+601D][U+8003][U+5B83][U+3002][U+8A18][U+4F4F][U+FF0C]Django
[U+63D0][U+4F9B][U+4E00][U+4E9B] channels [U+4F46][U+4F60][U+81EA][U+7531][U+7684][U+4F7F][U+7528][U+8207][U+6D88][U+8CBB][U+FF0C][U+6240][U+6709][U+7684]
channels [U+90FD][U+662F] network-transparent

[U+6709][U+4EF6][U+4E8B][U+662F] channels [U+4E0D][U+662F][U+4FDD][U+8B49][U+6E20][U+9053][U+7684][U+4EA4][U+4ED8][U+3002][U+5047][U+5982][U+4F60][U+9700][U+8981][U+78BA][U+5B9A][U+662F][U+4E00][U+500B][U+5C07][U+88AB][U+5B8C][U+6210][U+4EFB][U+52D9][U+FF0C][U+4F7F][U+7528][U+4E00][U+500B][U+70BA][U+6B64][U+8A2D][U+8A08][U+7684][U+7CFB][U+7D71][U+8A2D][U+5B9A][U+53BB][U+91CD][U+8A66][U+8207][U+4FDD][U+6301](e.g.
Celery)[U+FF0C][U+6216][U+662F][U+505A][U+51FA][U+4E00][U+500B][U+7BA1][U+7406][U+547D][U+4EE4][U+FF0C][U+5047][U+5982][U+6AA2][U+67E5][U+6C92][U+6709][U+5B8C][U+6210][U+FF0C][U+6703][U+91CD][U+65B0][U+9001][U+51FA][U+4E00][U+500B][U+8A0A][U+606F][U+7D66]
channel ([U+81EA][U+5DF1][U+52D5][U+624B][U+53BB][U+91CD][U+8A66][U+9019][U+500B][U+908F][U+8F2F])[U+3002]

2.2. Channels [Please insert \PrerenderUnicode{\unichar{30340}} into preamble][Please insert
\PrerenderUnicode{\unichar{27010}} into preamble][Please insert
\PrerenderUnicode{\unichar{24565}} into preamble]

11

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+6211][U+5011][U+5C07][U+5728][U+6587][U+6A94][U+7684][U+5176][U+9918][U+90E8][U+5206][U+66F4][U+8A73][U+7D30][U+5730][U+4ECB][U+7D39][U+4EC0][U+9EBC][U+6A23][U+7684][U+4EFB][U+52D9][U+9069][U+5408][U+7528][U+5728]
Channels [U+4E2D][U+FF0C][U+4F46][U+73FE][U+5728][U+8B93][U+6211][U+5011][U+9032][U+5165]
Getting Started with Channels [U+4E26][U+7DE8][U+5BEB][U+4E00][U+4E9B][U+7A0B][U+5F0F][U+78BC][U+3002]

[U+5B89][U+88DD]

Channels [U+53EF][U+4EE5][U+5F9E] PyPI [U+4E0A][U+53D6][U+5F97][U+FF0C][U+57F7][U+884C][U+4EE5][U+4E0B][U+6307][U+4EE4][U+4F86][U+5B89][U+88DD]:

pip install -U channels

[U+5B89][U+88DD][U+5B8C][U+6210][U+4E4B][U+5F8C][U+FF0C][U+9700][U+8981][U+65B0][U+589E]
channels [U+5230] INSTALLED_APPS [U+7684][U+8A2D][U+5B9A][U+4E2D]:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
...
'channels',

)

[U+9019][U+6A23][U+5B50][U+5C31][U+5B8C][U+6210][U+4E86][U+FF01][U+555F][U+7528][U+4E4B][U+5F8C][U+FF0C]
channels [U+5C07][U+6703][U+6574][U+5408][U+5230]Django [U+7576][U+4E2D][U+FF0C][U+4E26][U+4E14][U+63A7][U+5236]
runserver [U+6307][U+4EE4][U+3002][U+8A73][U+7D30][U+8ACB][U+898B] Getting Started
with Channels [U+7684][U+8AAA][U+660E][U+3002]

[U+5B89][U+88DD][U+6700][U+65B0][U+7684][U+958B][U+767C][U+4E2D][U+7248][U+672C]

[U+8981][U+5B89][U+88DD]Channels [U+7684][U+6700][U+65B0][U+958B][U+767C][U+4E2D][U+7248][U+672C][U+FF0C][U+4F7F][U+7528]
git clone [U+5C07][U+5C08][U+6848][U+8907][U+88FD][U+4E0B][U+4F86][U+FF0C][U+4E26][U+5207][U+63DB][U+9032][U+8A72][U+5C08][U+6848][U+76EE][U+9304][U+FF0C][U+7136][U+5F8C][U+4F7F][U+7528]
pip install [U+4F86][U+5B89][U+88DD][U+5230][U+60A8][U+76EE][U+524D][U+7684][U+865B][U+64EC][U+74B0][U+5883][U+4E4B][U+4E2D]:

$ git clone git@github.com:django/channels.git
$ cd channels
$ <activate your project’s virtual environment>
(environment) $ pip install -e . # the dot specifies the current repo

Getting Started with Channels

(If you haven’t yet, make sure you install Channels)

[U+73FE][U+5728][U+FF0C][U+8B93][U+6211][U+5011][U+958B][U+59CB][U+5BEB][U+4E00][U+4E9B]
consumer[U+3002][U+5047][U+5982][U+5C1A][U+672A][U+8B80][U+904E] Channels
[U+7684][U+6982][U+5FF5] [U+5148][U+7814][U+8B80][U+904E][U+5F8C][U+FF0C][U+5B83][U+5305][U+542B][U+6700][U+57FA][U+790E][U+7684][U+50CF][U+662F][U+90A3][U+4E9B][U+662F]
channels [U+8207][U+7FA4][U+7D44][U+3001][U+91CD][U+8981][U+7684][U+5BE6][U+65BD][U+6A21][U+5F0F][U+4F48][U+5C40][U+8207][U+6CE8][U+610F][U+4E8B][U+9805][U+3002]

First Consumers

[U+7576][U+4F60][U+7B2C][U+4E00][U+6B21][U+57F7][U+884C] Django
[U+4E26][U+5B89][U+88DD]Channels[U+FF0C][U+5C07][U+6703][U+8A2D][U+5B9A][U+9ED8][U+8A8D][U+7684]

12 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

layout - [U+6240][U+6709][U+7684] HTTP requests ([U+5728] http.
request channel) [U+5982][U+4F55][U+8DEF][U+7531][U+5230] Django
- [U+8207][U+904E][U+53BB][U+57FA][U+65BC] WSGI-based Django
[U+8207][U+4F60][U+7684][U+8996][U+89BA][U+5716][U+8207][U+975C][U+614B][U+6A94][U+6848][U+670D][U+52D9]
([U+4F9D][U+7136][U+904B][U+4F5C][U+5982][U+4E00][U+822C] runserver
[U+4E0D][U+6703][U+6709][U+4EFB][U+4F55][U+7684][U+4E0D][U+540C])

[U+505A][U+70BA][U+4E00][U+500B][U+975E][U+5E38][U+57FA][U+790E][U+7684][U+4ECB][U+7D39][U+FF0C][U+6211][U+5011][U+5373][U+5C07][U+64B0][U+5BEB][U+4E00][U+500B]
consumer [U+8986][U+5BEB][U+7684][U+5167][U+7F6E][U+8655][U+7406][U+5668][U+FF0C][U+76F4][U+63A5][U+8655][U+7406][U+6BCF][U+4E00][U+500B]
HTTP request [U+7684][U+9700][U+6C42][U+3002][U+4F60][U+4E0D][U+6703][U+7D93][U+5E38][U+5728][U+5C08][U+6848][U+5167][U+9019][U+6A23][U+505A][U+FF0C][U+4F46][U+662F][U+9019][U+5F88][U+68D2][U+7684][U+8AAA][U+660E]
channels [U+5982][U+4F55][U+6210][U+70BA] Django [U+7684][U+6838][U+5FC3] -
[U+4ED6][U+4E0D][U+662F][U+589E][U+52A0][U+4E00][U+500B][U+65B0][U+7684]
addition [U+800C][U+662F][U+4E00][U+500B][U+5168][U+65B0][U+7684] layer
[U+5EFA][U+7BC9][U+5728][U+65E2][U+6709][U+7684][U+8996][U+5716] view
[U+4E0A][U+3002]

[U+73FE][U+5728][U+FF0C][U+5EFA][U+4E00][U+500B][U+65B0][U+7684][U+5C08][U+6848][U+4EE5][U+53CA][U+4E00][U+500B][U+65B0][U+7684]
app[U+FF0C] [U+4E26][U+5C07][U+9019][U+4E9B][U+653E][U+5230][U+4E00][U+500B]
app:: [U+88E1][U+7684] consumers.py [U+6A94][U+6848][U+3002]

from django.http import HttpResponse
from channels.handler import AsgiHandler

def http_consumer(message):
Make standard HTTP response - access ASGI path attribute directly
response = HttpResponse("Hello world! You asked for %s" % message.content['path'])
Encode that response into message format (ASGI)
for chunk in AsgiHandler.encode_response(response):

message.reply_channel.send(chunk)

[U+5728][U+9019][U+88E1][U+5F88][U+91CD][U+8981][U+4E14][U+5FC5][U+9808][U+6CE8][U+610F][U+7684][U+4E8B][U+FF0C][U+56E0][U+70BA][U+6211][U+5011][U+9001][U+51FA][U+7684][U+8A0A][U+606F][U+5FC5][U+9808][U+662F]
JSON [U+53EF][U+5E8F][U+5217][U+5316][U+FF0C][U+9019][U+500B] request [U+8207] re-
sponse [U+8A0A][U+606F][U+662F][U+4E00][U+7D44][U+9375][U+503C][U+5C0D][U+7684][U+5F62][U+5F0F][U+3002][U+4F60][U+53EF][U+4EE5][U+8B80][U+53D6][U+66F4][U+591A][U+95DC][U+65BC][U+9019][U+4E9B][U+683C][U+5F0F][U+5728]
ASGI specification[U+FF0C] [U+4F46][U+4E0D][U+9700][U+8981][U+64D4][U+5FC3][U+592A][U+591A];[U+53EA][U+9700][U+8981][U+77E5][U+9053][U+9019][U+4E9B][U+662F][U+4E00][U+500B]
AsgiRequest class [U+7528][U+4F86][U+8F49][U+63DB] ASGI [U+5230] Django request
[U+7269][U+4EF6][U+FF0C]AsgiHandler class [U+8CA0][U+8CAC][U+8F49][U+63DB]
HttpResponse [U+9032][U+5165]ASGI [U+8A0A][U+606F][U+FF0C][U+9019][U+4E00][U+5207][U+5C31][U+5982][U+4F60][U+6240][U+898B][U+5230][U+4E0A][U+9762][U+4F7F][U+7528][U+7684][U+3002][U+901A][U+5E38][U+7576][U+4F60][U+4F7F][U+7528][U+4E00][U+822C][U+7684][U+8996][U+5716][U+6642][U+FF0C]Django
[U+7684][U+5167][U+7F6E][U+8655][U+7406][U+5668][U+7A0B][U+5F0F][U+78BC][U+5C07][U+6703][U+5B8C][U+6210][U+9019][U+4E9B][U+3002]

[U+73FE][U+5728][U+6211][U+5011][U+9700][U+8981][U+518D][U+505A][U+4E00][U+4EF6][U+4E8B][U+FF0C][U+90A3][U+5C31][U+662F][U+544A][U+8A34]
Django [U+9019][U+662F]Consumer [U+61C9][U+8A72][U+8981][U+88AB][U+7D81][U+5B9A][U+5728]
http.request channel [U+800C][U+4E0D][U+662F]Django [U+9810][U+8A2D][U+7684][U+8996][U+5716][U+7CFB][U+7D71][U+3002][U+9019][U+900F][U+904E][U+4FEE][U+6539]
settings [U+6A94][U+6848][U+5B8C][U+6210] - [U+8F03][U+70BA][U+7279][U+5225][U+662F][U+6211][U+5011][U+9700][U+8981][U+5B9A][U+7FA9][U+6211][U+5011][U+7684]
[U+9810][U+8A2D] channel layer [U+548C][U+8DEF][U+7531][U+8A2D][U+7F6E][U+3002]

Channel [U+8DEF][U+7531][U+6709][U+9EDE][U+50CF][U+662F] URL
[U+8DEF][U+7531][U+FF0C][U+56E0][U+6B64][U+5B83][U+7684][U+7D50][U+69CB][U+985E][U+4F3C]
- [U+4F60][U+900F][U+904E] dict [U+6307][U+5B9A][U+9019][U+500B][U+6620][U+5C04][U+7684][U+8A2D][U+5B9A][U+FF0C][U+6620][U+5C04]
channels [U+5230]Consumer [U+7684][U+53EF][U+8ABF][U+7528][U+3002][U+4ED6][U+7684][U+6A23][U+5B50][U+6703][U+50CF][U+662F]:

In settings.py
CHANNEL_LAYERS = {

"default": {
"BACKEND": "asgiref.inmemory.ChannelLayer",
"ROUTING": "myproject.routing.channel_routing",

},
}

2.4. Getting Started with Channels 13

test Documentation, [U+91CB][U+51FA] 1.1.5

In routing.py
from channels.routing import route
channel_routing = [

route("http.request", "myapp.consumers.http_consumer"),
]

[U+8B66][U+544A]: [U+9019][U+88E1][U+7684][U+7BC4][U+4F8B][U+FF0C][U+548C][U+5927][U+90E8][U+5206][U+9019][U+908A][U+7684][U+7BC4][U+4F8B][U+FF0C][U+4F7F][U+7528]
“In memory” channel layer[U+3002][U+9019][U+662F][U+7C21][U+55AE][U+7684][U+958B][U+59CB][U+8207][U+63D0][U+4F9B][U+7D55][U+5C0D][U+6C92][U+6709][U+8DE8][U+9032][U+7A0B][U+7684][U+901A][U+9053][U+50B3][U+8F38][U+FF0C][U+6240][U+4EE5][U+53EA][U+80FD][U+4F7F][U+7528][U+5728]
runserver [U+74B0][U+5883][U+4E0B][U+3002][U+5728][U+4F48][U+7F72][U+74B0][U+5883][U+4E0B][U+FF0C][U+4F60][U+9700][U+8981][U+9078][U+64C7][U+53E6][U+4E00][U+500B][U+5F8C][U+7AEF]
([U+7A0D][U+5F8C][U+8A0E][U+8AD6]) [U+4F86][U+904B][U+884C][U+3002]

[U+5982][U+4F60][U+6240][U+898B][U+FF0C][U+9019][U+6709][U+9EDE][U+50CF][U+662F]
Django [U+7684] DATABASES [U+8A2D][U+5B9A]; [U+88AB][U+547D][U+540D][U+7684] channel
layers [U+6709][U+500B][U+9810][U+8A2D][U+901A][U+9053][U+88AB][U+547D][U+540D][U+70BA]
default[U+3002] [U+6BCF][U+4E00][U+500B] layer [U+9700][U+8981][U+4E00][U+500B]
channel layer [U+985E][U+5225][U+FF0C][U+4E00][U+4E9B][U+9078][U+9805] (
[U+5047][U+5982] channel layer [U+9700][U+8981][U+4ED6][U+5011][U+7684][U+8A71])
[U+4EE5][U+53CA][U+7136][U+5F8C][U+4E00][U+500B][U+8DEF][U+7531][U+65B9][U+6848][U+FF0C][U+5176][U+6307][U+5411][U+5305][U+542B][U+8DEF][U+7531][U+8A2D][U+7F6E][U+7684][U+5217][U+8868][U+3002][U+5EFA][U+8B70][U+4F60][U+5728][U+9805][U+76EE][U+4E2D][U+7A31][U+9019][U+500B][U+6A94][U+6848][U+70BA]
routing.py [U+4E26][U+628A][U+5B83][U+548C] urls.py [U+653E][U+5728][U+4E00][U+8D77][U+FF0C][U+4F46][U+662F][U+53EA][U+8981][U+8DEF][U+5F91][U+662F][U+6B63][U+78BA][U+7684][U+FF0C][U+4F60][U+53EF][U+4EE5][U+628A][U+5B83][U+653E][U+5728][U+4EFB][U+4F55][U+4F60][U+559C][U+6B61][U+7684][U+5730][U+65B9][U+3002]

[U+5047][U+5982][U+4F60][U+900F][U+904E] python manage.py runserver
[U+4F86][U+555F][U+52D5][U+7136][U+5F8C][U+9023][U+63A5][U+5230] http://
localhost:8000 [U+5C31][U+53EF][U+4EE5][U+6210][U+529F][U+7684][U+700F][U+89BD][U+5230]
Hello World [U+9801][U+9762][U+800C][U+4E0D][U+662F][U+9810][U+8A2D][U+7684] Django
[U+56DE][U+61C9][U+9801][U+9762][U+FF0C][U+4EE3][U+8868][U+53EF][U+4EE5][U+904B][U+4F5C][U+3002][U+5047][U+5982][U+4F60][U+6C92][U+6709][U+5F97][U+5230][U+56DE][U+61C9][U+FF0C][U+8ACB][U+53C3][U+8003]
installed Channels correctly [U+3002]

[U+73FE][U+5728][U+FF0C][U+9019][U+9084][U+4E0D][U+5920][U+9177] - Django
[U+672C][U+4F86][U+5C31][U+4EE5][U+5DF2][U+7D93][U+80FD][U+5920][U+8655][U+7406][U+539F][U+751F][U+7684]
HTTP [U+56DE][U+8986][U+3002][U+8B93][U+6211][U+5011][U+5617][U+8A66][U+4E00][U+4E9B]
WebSockets [U+4E26][U+4E14][U+505A][U+4E00][U+4E9B][U+57FA][U+790E][U+7684][U+804A][U+5929][U+670D][U+52D9][U+3002]

[U+6211][U+5011][U+5C07][U+555F][U+52D5][U+4E00][U+500B][U+7C21][U+55AE][U+7684][U+670D][U+52D9][U+FF0C][U+53EA][U+7528][U+4F86][U+662F][U+56DE][U+8986][U+5B83][U+767C][U+9001][U+56DE][U+540C][U+4E00][U+500B][U+5BA2][U+6236][U+7AEF][U+7684][U+6BCF][U+689D][U+6D88][U+606F]
- [U+6C92][U+6709][U+8DE8][U+5BA2][U+6236][U+901A][U+4FE1][U+3002]
[U+4ED6][U+4E0D][U+4E00][U+5B9A][U+975E][U+5E38][U+5BE6][U+7528][U+FF0C][U+4F46][U+5B83][U+662F][U+4E00][U+500B][U+597D][U+53EF][U+958B][U+59CB][U+53BB][U+64B0][U+5BEB]
Channels consumers[U+3002]

[U+522A][U+9664][U+4E4B][U+524D][U+7684][U+6D88][U+8CBB][U+8005][U+8207][U+4ED6][U+7684][U+8DEF][U+7531]
- [U+5F9E][U+73FE][U+5728][U+958B][U+59CB][U+6211][U+5011][U+5E0C][U+671B][U+662F][U+4E00][U+500B][U+4E00][U+822C][U+7684]
Django [U+8996][U+5716][U+5C64][U+53BB][U+670D][U+52D9] HTTP
[U+8ACB][U+6C42][U+FF0C][U+6703][U+6709][U+72C0][U+6CC1][U+767C][U+751F][U+5047][U+5982][U+4F60][U+6C92][U+6709][U+6307][U+5B9A][U+4E00][U+500B][U+91DD][U+5C0D]
http.request [U+7D66][U+6D88][U+8CBB][U+8005] - [U+4E26][U+4E14][U+5EFA][U+7ACB][U+4E00][U+500B]
WebSocket [U+9867][U+5BA2][U+66FF][U+4EE3]:

In consumers.py

def ws_message(message):
ASGI WebSocket packet-received and send-packet message types
both have a "text" key for their textual data.
message.reply_channel.send({

"text": message.content['text'],
})

[U+639B][U+52FE][U+5B83][U+5230] websocket.receive channel [U+5982][U+4E0B]

14 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

In routing.py
from channels.routing import route
from myapp.consumers import ws_message

channel_routing = [
route("websocket.receive", ws_message),

]

[U+73FE][U+5728][U+8B93][U+6211][U+5011][U+770B][U+770B][U+5B83][U+5011][U+5728][U+505A][U+4E9B][U+4EC0][U+9EBC][U+3002][U+5B83][U+7D91][U+7D81][U+5728]
websocket.receice channel[U+FF0C][U+9019][U+610F][U+5473][U+8457][U+5F9E] Web-
Socket packet [U+7531][U+5BA2][U+6236][U+7AEF][U+767C][U+9001][U+7D66][U+6211][U+5011][U+6642][U+5B83][U+5C07][U+6536][U+5230][U+4E00][U+500B][U+8A0A][U+606F][U+3002]

[U+7576][U+5B83][U+5F97][U+5230][U+9019][U+500B][U+8A0A][U+606F][U+6642][U+FF0C][U+4ED6][U+6703][U+5F97][U+5F9E][U+800C][U+5230]
reply_channel [U+5C6C][U+6027][U+FF0C][U+4ED6][U+662F][U+5F9E]
client [U+7AEF][U+5F97][U+5230][U+552F][U+4E00][U+7684] channel
[U+56DE][U+61C9][U+FF0C][U+63A5][U+8457][U+4F7F][U+7528] send()
[U+65B9][U+6CD5][U+9001][U+51FA][U+4E00][U+4E9B][U+5167][U+5BB9][U+8FD4][U+56DE]
client[U+3002]

Let’s test it! Run runserver, open a browser, navigate to a page on the server (you can’t use any page’s console
because of origin restrictions), and put the following into the JavaScript console to open a WebSocket and send some
data down it (you might need to change the socket address if you’re using a development VM or similar)

// Note that the path doesn't matter for routing; any WebSocket
// connection gets bumped over to WebSocket consumers
socket = new WebSocket("ws://" + window.location.host + "/chat/");
socket.onmessage = function(e) {

alert(e.data);
}
socket.onopen = function() {

socket.send("hello world");
}
// Call onopen directly if socket is already open
if (socket.readyState == WebSocket.OPEN) socket.onopen();

[U+4F60][U+61C9][U+8A72][U+770B][U+5230][U+4E00][U+500B][U+63D0][U+793A][U+7ACB][U+523B][U+56DE][U+50B3][U+4E26][U+4E14][U+8AAA]
“hello world” - [U+4F60][U+7684][U+8A0A][U+606F][U+5DF2][U+7D93][U+88AB][U+5F80][U+8FD4][U+900F][U+904E][U+4F3A][U+670D][U+5668][U+4E26][U+4E14][U+56DE][U+8986][U+53BB][U+89F8][U+767C][U+9019][U+500B][U+63D0][U+793A][U+3002]

[U+7FA4][U+7D44]

[U+73FE][U+5728][U+8B93][U+6211][U+5011][U+5EFA][U+7ACB][U+6211][U+5011][U+7684]
echo [U+4F3A][U+670D][U+5668][U+9032][U+5165][U+4E00][U+500B][U+5BE6][U+969B][U+7684][U+804A][U+5929][U+4F3A][U+670D][U+5668][U+FF0C][U+6240][U+4EE5][U+4EBA][U+5011][U+53EF][U+4EE5][U+548C][U+5176][U+4ED6][U+4EBA][U+5F7C][U+6B64][U+4EA4][U+8AC7][U+3002][U+8981][U+5B8C][U+6210][U+9019][U+500B][U+6211][U+5011][U+5C07][U+4F7F][U+7528]
Groups[U+FF0C][U+5176][U+4E2D][U+4E00][U+500B] :doc”core concepts<concepts> of Chan-
nels[U+FF0C][U+63A5][U+8457][U+6211][U+5011][U+7684][U+57FA][U+672C][U+65B9][U+5F0F][U+662F][U+505A][U+591A][U+64AD][U+6D88][U+606F][U+3002]

[U+8981][U+5B8C][U+6210][U+9019][U+500B][U+FF0C][U+6211][U+5011][U+5C07]
hook up websocket.connect [U+8207] websocket.disconnect channels
[U+53BB][U+65B0][U+589E][U+8207][U+79FB][U+9664][U+6211][U+5011][U+7684] clients
[U+5F9E]Group [U+7576][U+4ED6][U+5011][U+9023][U+63A5][U+6216][U+662F][U+4E2D][U+65B7][U+FF0C][U+50CF][U+662F]:

In consumers.py
from channels import Group

Connected to websocket.connect
def ws_add(message):

Accept the incoming connection

2.4. Getting Started with Channels 15

test Documentation, [U+91CB][U+51FA] 1.1.5

message.reply_channel.send({"accept": True})
Add them to the chat group
Group("chat").add(message.reply_channel)

Connected to websocket.disconnect
def ws_disconnect(message):

Group("chat").discard(message.reply_channel)

[U+5099][U+8A3B]: You need to explicitly accept WebSocket connections if you override connect by sending
accept: True - you can also reject them at connection time, before they open, by sending close: True.

[U+7576][U+7136][U+FF0C][U+5982][U+679C][U+4F60][U+5DF2][U+7D93][U+8B80][U+5B8C]
Channels [U+7684][U+6982][U+5FF5] [U+FF0C][U+5247][U+4F60][U+77E5][U+9053][U+52A0][U+5230]
groups [U+4E2D][U+7684] channels [U+53EA][U+8981][U+4ED6][U+5011][U+7684][U+8A0A][U+606F][U+904E][U+671F][U+FF0C][U+5247]
channel [U+4E5F][U+8DDF][U+8457][U+904E][U+671F][U+3002] (
[U+6BCF][U+4E00][U+500B] channel layer [U+90FD][U+6709][U+8A0A][U+606F][U+7684][U+904E][U+671F][U+6642][U+9650][U+FF0C][U+901A][U+5E38][U+662F]
30 [U+79D2][U+81F3][U+6578][U+5206][U+9418][U+FF0C][U+901A][U+5E38][U+53EF][U+4EE5][U+8A2D][U+5B9A][U+3002]
) - [U+4F46][U+662F] disconnect handler [U+5728][U+4EFB][U+4F55][U+6642][U+9593][U+90FD][U+53EF][U+4EE5][U+88AB][U+547C][U+53EB][U+3002]

[U+5099][U+8A3B]: Channel [U+7684][U+8A2D][U+8A08][U+6703][U+671F][U+671B][U+4ED6][U+53EF][U+4EE5][U+5728][U+50B3][U+8A0A][U+606F][U+5931][U+6557][U+6642][U+7E7C][U+7E8C][U+5DE5][U+4F5C][U+3002][U+5B83][U+5047][U+8A2D][U+5C11][U+6578][U+7684][U+8A0A][U+606F][U+53EF][U+80FD][U+4E0D][U+6703][U+88AB][U+6210][U+529F][U+7684][U+767C][U+9001][U+51FA][U+53BB][U+FF0C][U+56E0][U+6B64][U+FF0C][U+5176][U+6838][U+5FC3][U+7684][U+529F][U+80FD][U+5728][U+8A2D][U+8A08][U+4E0A][U+6703][U+9810][U+671F][U+6709][U+5931][U+6557][U+7684][U+767C][U+751F][U+FF0C][U+6240][U+4EE5][U+7576][U+8A0A][U+606F][U+6C92][U+6709][U+88AB][U+9001][U+51FA][U+53BB][U+7684][U+6642][U+5019][U+FF0C][U+4E0D][U+6703][U+9020][U+6210][U+7CFB][U+7D71][U+5D29][U+6F70][U+3002]

We suggest you design your applications the same way - rather than relying on 100% guaranteed delivery, which
Channels won’t give you, look at each failure case and program something to expect and handle it - be that retry logic,
partial content handling, or just having something not work that one time. HTTP requests are just as fallible, and most
people’s response to that is a generic error page!

Now, that’s taken care of adding and removing WebSocket send channels for the chat group; all we need to do now
is take care of message sending. Instead of echoing the message back to the client like we did above, we’ll instead
send it to the whole Group, which means any client who’s been added to it will get the message. Here’s all the code:

In consumers.py
from channels import Group

Connected to websocket.connect
def ws_add(message):

Accept the connection
message.reply_channel.send({"accept": True})
Add to the chat group
Group("chat").add(message.reply_channel)

Connected to websocket.receive
def ws_message(message):

Group("chat").send({
"text": "[user] %s" % message.content['text'],

})

Connected to websocket.disconnect
def ws_disconnect(message):

Group("chat").discard(message.reply_channel)

And what our routing should look like in routing.py:

from channels.routing import route
from myapp.consumers import ws_add, ws_message, ws_disconnect

16 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

channel_routing = [
route("websocket.connect", ws_add),
route("websocket.receive", ws_message),
route("websocket.disconnect", ws_disconnect),

]

Note that the http.request route is no longer present - if we leave it out, then Django will route HTTP requests
to the normal view system by default, which is probably what you want. Even if you have a http.request route
that matches just a subset of paths or methods, the ones that don’t match will still fall through to the default handler,
which passes it into URL routing and the views.

With all that code, you now have a working set of a logic for a chat server. Test time! Run runserver, open a
browser and use that same JavaScript code in the developer console as before

// Note that the path doesn't matter right now; any WebSocket
// connection gets bumped over to WebSocket consumers
socket = new WebSocket("ws://" + window.location.host + "/chat/");
socket.onmessage = function(e) {

alert(e.data);
}
socket.onopen = function() {

socket.send("hello world");
}
// Call onopen directly if socket is already open
if (socket.readyState == WebSocket.OPEN) socket.onopen();

You should see an alert come back immediately saying “hello world” - but this time, you can open another tab and
do the same there, and both tabs will receive the message and show an alert. Any incoming message is sent to the
chat group by the ws_message consumer, and both your tabs will have been put into the chat group when they
connected.

Feel free to put some calls to print in your handler functions too, if you like, so you can understand when they’re
called. You can also use pdb and other similar methods you’d use to debug normal Django projects.

Running with Channels

Because Channels takes Django into a multi-process model, you no longer run everything in one process along with a
WSGI server (of course, you’re still free to do that if you don’t want to use Channels). Instead, you run one or more
interface servers, and one or more worker servers, connected by that channel layer you configured earlier.

There are multiple kinds of “interface servers”, and each one will service a different type of request - one might do
both WebSocket and HTTP requests, while another might act as an SMS message gateway, for example.

These are separate from the “worker servers” where Django will run actual logic, though, and so the channel layer
transports the content of channels across the network. In a production scenario, you’d usually run worker servers as a
separate cluster from the interface servers, though of course you can run both as separate processes on one machine
too.

By default, Django doesn’t have a channel layer configured - it doesn’t need one to run normal WSGI requests, after
all. As soon as you try to add some consumers, though, you’ll need to configure one.

In the example above we used the in-memory channel layer implementation as our default channel layer. This just
stores all the channel data in a dict in memory, and so isn’t actually cross-process; it only works inside runserver,
as that runs the interface and worker servers in different threads inside the same process. When you deploy to
production, you’ll need to use a channel layer like the Redis backend asgi_redis that works cross-process; see
[U+901A][U+9053][U+5C64][U+985E][U+578B] for more.

2.4. Getting Started with Channels 17

test Documentation, [U+91CB][U+51FA] 1.1.5

The second thing, once we have a networked channel backend set up, is to make sure we’re running an interface server
that’s capable of serving WebSockets. To solve this, Channels comes with daphne, an interface server that can handle
both HTTP and WebSockets at the same time, and then ties this in to run when you run runserver - you shouldn’t
notice any difference from the normal Django runserver, though some of the options may be a little different.

(Under the hood, runserver is now running Daphne in one thread and a worker with autoreload in another - it’s
basically a miniature version of a deployment, but all in one process)

Let’s try out the Redis backend - Redis runs on pretty much every machine, and has a very small overhead, which
makes it perfect for this kind of thing. Install the asgi_redis package using pip.

pip install asgi_redis

and set up your channel layer like this:

In settings.py
CHANNEL_LAYERS = {

"default": {
"BACKEND": "asgi_redis.RedisChannelLayer",
"CONFIG": {

"hosts": [("localhost", 6379)],
},
"ROUTING": "myproject.routing.channel_routing",

},
}

You’ll also need to install the Redis server - there are downloads available for Mac OS and Windows, and it’s in pretty
much every linux distribution’s package manager. For example, on Ubuntu, you can just:

sudo apt-get install redis-server

Fire up runserver, and it’ll work as before - unexciting, like good infrastructure should be. You can also try out
the cross-process nature; run these two commands in two terminals:

• manage.py runserver --noworker

• manage.py runworker

As you can probably guess, this disables the worker threads in runserver and handles them in a separate process.
You can pass -v 2 to runworker if you want to see logging as it runs the consumers.

If Django is in debug mode (DEBUG=True), then runworker will serve static files, as runserver does. Just like
a normal Django setup, you’ll have to set up your static file serving for when DEBUG is turned off.

Persisting Data

Echoing messages is a nice simple example, but it’s ignoring the real need for a system like this - persistent state for
connections. Let’s consider a basic chat site where a user requests a chat room upon initial connection, as part of the
query string (e.g. wss://host/websocket?room=abc).

The reply_channel attribute you’ve seen before is our unique pointer to the open WebSocket - because it varies
between different clients, it’s how we can keep track of “who” a message is from. Remember, Channels is network-
transparent and can run on multiple workers, so you can’t just store things locally in global variables or similar.

Instead, the solution is to persist information keyed by the reply_channel in some other data store - sound famil-
iar? This is what Django’s session framework does for HTTP requests, using a cookie as the key. Wouldn’t it be useful
if we could get a session using the reply_channel as a key?

18 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

Channels provides a channel_session decorator for this purpose - it provides you with an attribute called
message.channel_session that acts just like a normal Django session.

Let’s use it now to build a chat server that expects you to pass a chatroom name in the path of your WebSocket request
(we’ll ignore auth for now - that’s next):

In consumers.py
from channels import Group
from channels.sessions import channel_session

Connected to websocket.connect
@channel_session
def ws_connect(message):

Accept connection
message.reply_channel.send({"accept": True})
Work out room name from path (ignore slashes)
room = message.content['path'].strip("/")
Save room in session and add us to the group
message.channel_session['room'] = room
Group("chat-%s" % room).add(message.reply_channel)

Connected to websocket.receive
@channel_session
def ws_message(message):

Group("chat-%s" % message.channel_session['room']).send({
"text": message['text'],

})

Connected to websocket.disconnect
@channel_session
def ws_disconnect(message):

Group("chat-%s" % message.channel_session['room']).discard(message.reply_channel)

Update routing.py as well:

in routing.py
from channels.routing import route
from myapp.consumers import ws_connect, ws_message, ws_disconnect

channel_routing = [
route("websocket.connect", ws_connect),
route("websocket.receive", ws_message),
route("websocket.disconnect", ws_disconnect),

]

If you play around with it from the console (or start building a simple JavaScript chat client that appends received
messages to a div), you’ll see that you can set a chat room with the initial request.

Authentication

Now, of course, a WebSocket solution is somewhat limited in scope without the ability to live with the rest of your
website - in particular, we want to make sure we know what user we’re talking to, in case we have things like private
chat channels (we don’t want a solution where clients just ask for the right channels, as anyone could change the code
and just put in private channel names)

It can also save you having to manually make clients ask for what they want to see; if I see you open a WebSocket
to my “updates” endpoint, and I know which user you are, I can just auto-add that channel to all the relevant groups
(mentions of that user, for example).

2.4. Getting Started with Channels 19

test Documentation, [U+91CB][U+51FA] 1.1.5

Handily, as WebSockets start off using the HTTP protocol, they have a lot of familiar features, including a path, GET
parameters, and cookies. We’d like to use these to hook into the familiar Django session and authentication systems;
after all, WebSockets are no good unless we can identify who they belong to and do things securely.

In addition, we don’t want the interface servers storing data or trying to run authentication; they’re meant to be simple,
lean, fast processes without much state, and so we’ll need to do our authentication inside our consumer functions.

Fortunately, because Channels has an underlying spec for WebSockets and other messages (ASGI), it ships with dec-
orators that help you with both authentication and getting the underlying Django session (which is what Django
authentication relies on).

Channels can use Django sessions either from cookies (if you’re running your websocket server on the same domain
as your main site, using something like Daphne), or from a session_key GET parameter, which works if you want
to keep running your HTTP requests through a WSGI server and offload WebSockets to a second server process on
another domain.

You get access to a user’s normal Django session using the http_session decorator - that gives you a
message.http_session attribute that behaves just like request.session. You can go one further and use
http_session_user which will provide a message.user attribute as well as the session attribute.

Now, one thing to note is that you only get the detailed HTTP information during the connect message of a Web-
Socket connection (you can read more about that in the ASGI spec) - this means we’re not wasting bandwidth sending
the same information over the wire needlessly.

This also means we’ll have to grab the user in the connection handler and then store it in the session; thankfully, Chan-
nels ships with both a channel_session_user decorator that works like the http_session_user decorator
we mentioned above but loads the user from the channel session rather than the HTTP session, and a function called
transfer_user which replicates a user from one session to another. Even better, it combines all of these into a
channel_session_user_from_http decorator.

Bringing that all together, let’s make a chat server where users can only chat to people with the same first letter of their
username:

In consumers.py
from channels import Channel, Group
from channels.sessions import channel_session
from channels.auth import channel_session_user, channel_session_user_from_http

Connected to websocket.connect
@channel_session_user_from_http
def ws_add(message):

Accept connection
message.reply_channel.send({"accept": True})
Add them to the right group
Group("chat-%s" % message.user.username[0]).add(message.reply_channel)

Connected to websocket.receive
@channel_session_user
def ws_message(message):

Group("chat-%s" % message.user.username[0]).send({
"text": message['text'],

})

Connected to websocket.disconnect
@channel_session_user
def ws_disconnect(message):

Group("chat-%s" % message.user.username[0]).discard(message.reply_channel)

If you’re just using runserver (and so Daphne), you can just connect and your cookies should transfer your auth
over. If you were running WebSockets on a separate domain, you’d have to remember to provide the Django session

20 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

ID as part of the URL, like this

socket = new WebSocket("ws://127.0.0.1:9000/?session_key=abcdefg");

You can get the current session key in a template with {{ request.session.session_key }}. Note that
this can’t work with signed cookie sessions - since only HTTP responses can set cookies, it needs a backend it can
write to to separately store state.

Security

Unlike AJAX requests, WebSocket requests are not limited by the Same-Origin policy. This means you don’t have to
take any extra steps when you have an HTML page served by host A containing JavaScript code wanting to connect
to a WebSocket on Host B.

While this can be convenient, it also implies that by default any third-party site can connect to your WebSocket
application. When you are using the http_session_user or the channel_session_user_from_http
decorator, this connection would be authenticated.

The WebSocket specification requires browsers to send the origin of a WebSocket request in the HTTP header named
Origin, but validating that header is left to the server.

You can use the decorator channels.security.websockets.allowed_hosts_only on a websocket.
connect consumer to only allow requests originating from hosts listed in the ALLOWED_HOSTS setting:

In consumers.py
from channels import Channel, Group
from channels.sessions import channel_session
from channels.auth import channel_session_user, channel_session_user_from_http
from channels.security.websockets import allowed_hosts_only.

Connected to websocket.connect
@allowed_hosts_only
@channel_session_user_from_http
def ws_add(message):

Accept connection
...

Requests from other hosts or requests with missing or invalid origin header are now rejected.

The name allowed_hosts_only is an alias for the class-based decorator
AllowedHostsOnlyOriginValidator, which inherits from BaseOriginValidator. If you have
custom requirements for origin validation, create a subclass and overwrite the method validate_origin(self,
message, origin). It must return True when a message should be accepted, False otherwise.

Routing

The routing.py file acts very much like Django’s urls.py, including the ability to route things to different
consumers based on path, or any other message attribute that’s a string (for example, http.request messages
have a method key you could route based on).

Much like urls, you route using regular expressions; the main difference is that because the path is not special-cased
- Channels doesn’t know that it’s a URL - you have to start patterns with the root /, and end includes without a / so
that when the patterns combine, they work correctly.

Finally, because you’re matching against message contents using keyword arguments, you can only use named groups
in your regular expressions! Here’s an example of routing our chat from above:

2.4. Getting Started with Channels 21

test Documentation, [U+91CB][U+51FA] 1.1.5

http_routing = [
route("http.request", poll_consumer, path=r"^/poll/$", method=r"^POST$"),

]

chat_routing = [
route("websocket.connect", chat_connect, path=r"^/(?P<room>[a-zA-Z0-9_]+)/$"),
route("websocket.disconnect", chat_disconnect),

]

routing = [
You can use a string import path as the first argument as well.
include(chat_routing, path=r"^/chat"),
include(http_routing),

]

The routing is resolved in order, short-circuiting around the includes if one or more of their matches fails. You don’t
have to start with the ^ symbol - we use Python’s re.match function, which starts at the start of a line anyway - but
it’s considered good practice.

When an include matches part of a message value, it chops off the bit of the value it matched before passing it down to
its routes or sub-includes, so you can put the same routing under multiple includes with different prefixes if you like.

Because these matches come through as keyword arguments, we could modify our consumer above to use a room
based on URL rather than username:

Connected to websocket.connect
@channel_session_user_from_http
def ws_add(message, room):

Add them to the right group
Group("chat-%s" % room).add(message.reply_channel)
Accept the connection request
message.reply_channel.send({"accept": True})

In the next section, we’ll change to sending the room as a part of the WebSocket message - which you might do if
you had a multiplexing client - but you could use routing there as well.

Models

So far, we’ve just been taking incoming messages and rebroadcasting them to other clients connected to the same
group, but this isn’t that great; really, we want to persist messages to a datastore, and we’d probably like to be able to
inject messages into chatrooms from things other than WebSocket client connections (perhaps a built-in bot, or server
status messages).

Thankfully, we can just use Django’s ORM to handle persistence of messages and easily integrate the send into the
save flow of the model, rather than the message receive - that way, any new message saved will be broadcast to all the
appropriate clients, no matter where it’s saved from.

We’ll even take some performance considerations into account: We’ll make our own custom channel for new chat
messages and move the model save and the chat broadcast into that, meaning the sending process/consumer can move
on immediately and not spend time waiting for the database save and the (slow on some backends) Group.send()
call.

Let’s see what that looks like, assuming we have a ChatMessage model with message and room fields:

In consumers.py
from channels import Channel
from channels.sessions import channel_session

22 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

from .models import ChatMessage

Connected to chat-messages
def msg_consumer(message):

Save to model
room = message.content['room']
ChatMessage.objects.create(

room=room,
message=message.content['message'],

)
Broadcast to listening sockets
Group("chat-%s" % room).send({

"text": message.content['message'],
})

Connected to websocket.connect
@channel_session
def ws_connect(message):

Work out room name from path (ignore slashes)
room = message.content['path'].strip("/")
Save room in session and add us to the group
message.channel_session['room'] = room
Group("chat-%s" % room).add(message.reply_channel)
Accept the connection request
message.reply_channel.send({"accept": True})

Connected to websocket.receive
@channel_session
def ws_message(message):

Stick the message onto the processing queue
Channel("chat-messages").send({

"room": message.channel_session['room'],
"message": message['text'],

})

Connected to websocket.disconnect
@channel_session
def ws_disconnect(message):

Group("chat-%s" % message.channel_session['room']).discard(message.reply_channel)

Update routing.py as well:

in routing.py
from channels.routing import route
from myapp.consumers import ws_connect, ws_message, ws_disconnect, msg_consumer

channel_routing = [
route("websocket.connect", ws_connect),
route("websocket.receive", ws_message),
route("websocket.disconnect", ws_disconnect),
route("chat-messages", msg_consumer),

]

Note that we could add messages onto the chat-messages channel from anywhere; inside a View, inside another
model’s post_save signal, inside a management command run via cron. If we wanted to write a bot, too, we could
put its listening logic inside the chat-messages consumer, as every message would pass through it.

2.4. Getting Started with Channels 23

test Documentation, [U+91CB][U+51FA] 1.1.5

Enforcing Ordering

There’s one final concept we want to introduce you to before you go on to build sites with Channels - consumer
ordering.

Because Channels is a distributed system that can have many workers, by default it just processes messages in the order
the workers get them off the queue. It’s entirely feasible for a WebSocket interface server to send out two receive
messages close enough together that a second worker will pick up and start processing the second message before the
first worker has finished processing the first.

This is particularly annoying if you’re storing things in the session in the one consumer and trying to get them in the
other consumer - because the connect consumer hasn’t exited, its session hasn’t saved. You’d get the same effect if
someone tried to request a view before the login view had finished processing, of course, but HTTP requests usually
come in a bit slower from clients.

Channels has a solution - the enforce_ordering decorator. All WebSocket messages contain an order key,
and this decorator uses that to make sure that messages are consumed in the right order. In addition, the connect
message blocks the socket opening until it’s responded to, so you are always guaranteed that connect will run before
any receives even without the decorator.

The decorator uses channel_session to keep track of what numbered messages have been processed, and if a
worker tries to run a consumer on an out-of-order message, it raises the ConsumeLater exception, which puts the
message back on the channel it came from and tells the worker to work on another message.

There’s a high cost to using enforce_ordering, which is why it’s an optional decorator. Here’s an example of it
being used:

In consumers.py
from channels import Channel, Group
from channels.sessions import channel_session, enforce_ordering
from channels.auth import channel_session_user, channel_session_user_from_http

Connected to websocket.connect
@channel_session_user_from_http
def ws_add(message):

This doesn't need a decorator - it always runs separately
message.channel_session['sent'] = 0
Add them to the right group
Group("chat").add(message.reply_channel)
Accept the socket
message.reply_channel.send({"accept": True})

Connected to websocket.receive
@enforce_ordering
@channel_session_user
def ws_message(message):

Without enforce_ordering this wouldn't work right
message.channel_session['sent'] = message.channel_session['sent'] + 1
Group("chat").send({

"text": "%s: %s" % (message.channel_session['sent'], message['text']),
})

Connected to websocket.disconnect
@channel_session_user
def ws_disconnect(message):

Group("chat").discard(message.reply_channel)

Generally, the performance (and safety) of your ordering is tied to your session backend’s performance. Make sure
you choose a session backend wisely if you’re going to rely heavily on enforce_ordering.

24 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

Next Steps

That covers the basics of using Channels; you’ve seen not only how to use basic channels, but also seen how they
integrate with WebSockets, how to use groups to manage logical sets of channels, and how Django’s session and
authentication systems easily integrate with WebSockets.

We recommend you read through the rest of the reference documentation to see more about what you can do with
channels; in particular, you may want to look at our [U+90E8][U+7F72] documentation to get an idea of how to
design and run apps in production environments.

[U+90E8][U+7F72]

[U+90E8][U+7F72][U+4F7F][U+7528] channels [U+7684][U+61C9][U+7528][U+6BD4][U+8D77][U+4E00][U+822C][U+7684]
Django WSGI [U+9700][U+8981][U+591A][U+5E7E][U+500B][U+6B65][U+9A5F][U+FF0C][U+4F46][U+5982][U+4F55][U+90E8][U+7F72][U+4F60][U+6709][U+5E7E][U+500B][U+9078][U+9805][U+8207][U+901A][U+904E]
channels [U+7684] channel [U+6D41][U+91CF][U+3002]

[U+9996][U+5148][U+FF0C][U+8A18][U+4F4F][U+9019][U+662F][U+4E00][U+500B] Django
[U+5167][U+7684][U+53EF][U+9078][U+9805][U+3002][U+5047][U+4F7F][U+4F60][U+96E2][U+958B][U+4E00][U+500B][U+9810][U+8A2D][U+7684][U+8A2D][U+5B9A]
(no CHANNEL_LAYERS) [U+7684][U+5C08][U+6848][U+FF0C][U+5B83][U+5C07][U+6703][U+57F7][U+884C][U+548C][U+904B][U+4F5C][U+50CF][U+662F][U+4E00][U+822C][U+7684]
WSGI app[U+3002]

[U+7576][U+4F60][U+60F3][U+5728][U+4F5C][U+696D][U+4E0A][U+555F][U+7528] chan-
nels[U+FF0C][U+4F60][U+9700][U+8981][U+505A][U+9019] 3 [U+4EF6][U+4E8B][U+60C5]:

• [U+8A2D][U+4E00][U+500B] channel [U+5F8C][U+7AEF]

• [U+57F7][U+884C][U+4F7F][U+7528][U+8005][U+4F3A][U+670D][U+5668]

• [U+57F7][U+884C][U+4ECB][U+9762][U+4F3A][U+670D][U+5668]

You can set things up in one of two ways; either route all traffic through a HTTP/WebSocket interface server, removing
the need to run a WSGI server at all; or, just route WebSockets and long-poll HTTP connections to the interface server,
and leave other pages served by a standard WSGI server.

Routing all traffic through the interface server lets you have WebSockets and long-polling coexist in the same URL
tree with no configuration; if you split the traffic up, you’ll need to configure a webserver or layer 7 loadbalancer in
front of the two servers to route requests to the correct place based on path or domain. Both methods are covered
below.

[U+8A2D][U+5B9A][U+4E00][U+500B] channel [U+5F8C][U+7AEF]

The first step is to set up a channel backend. If you followed the Getting Started with Channels guide, you will have
ended up using the in-memory backend, which is useful for runserver, but as it only works inside the same process,
useless for actually running separate worker and interface servers.

Instead, take a look at the list of [U+901A][U+9053][U+5C64][U+985E][U+578B], and choose one that fits
your requirements (additionally, you could use a third-party pluggable backend or write your own - that page also
explains the interface and rules a backend has to follow).

Typically a channel backend will connect to one or more central servers that serve as the communication layer - for
example, the Redis backend connects to a Redis server. All this goes into the CHANNEL_LAYERS setting; here’s an
example for a remote Redis server:

CHANNEL_LAYERS = {
"default": {

"BACKEND": "asgi_redis.RedisChannelLayer",
"CONFIG": {

2.5. [Please insert \PrerenderUnicode{\unichar{37096}} into preamble][Please insert
\PrerenderUnicode{\unichar{32626}} into preamble]

25

test Documentation, [U+91CB][U+51FA] 1.1.5

"hosts": [("redis-server-name", 6379)],
},
"ROUTING": "my_project.routing.channel_routing",

},
}

[U+4F7F][U+7528]Redis[U+5F8C][U+7AEF][U+FF0C][U+4F60][U+5FC5][U+9808][U+5B89][U+88DD][U+5B83][U+FF1A]

pip install -U asgi_redis

Some backends, though, don’t require an extra server, like the IPC backend, which works between processes on the
same machine but not over the network (it’s available in the asgi_ipc package):

CHANNEL_LAYERS = {
"default": {

"BACKEND": "asgi_ipc.IPCChannelLayer",
"ROUTING": "my_project.routing.channel_routing",
"CONFIG": {

"prefix": "mysite",
},

},
}

Make sure the same settings file is used across all your workers and interface servers; without it, they won’t be able to
talk to each other and things will just fail to work.

If you prefer to use RabbitMQ layer, please refer to its documentation. Usually your config will end up like this:

CHANNEL_LAYERS = {
"default": {

"BACKEND": "asgi_rabbitmq.RabbitmqChannelLayer",
"ROUTING": "my_project.routing.channel_routing",
"CONFIG": {

"url": "amqp://guest:guest@rabbitmq:5672/%2F",
},

},
}

[U+57F7][U+884C][U+4F7F][U+7528][U+8005][U+4F3A][U+670D][U+5668]

Because the work of running consumers is decoupled from the work of talking to HTTP, WebSocket and other client
connections, you need to run a cluster of “worker servers” to do all the processing.

Each server is single-threaded, so it’s recommended you run around one or two per core on each machine; it’s safe to
run as many concurrent workers on the same machine as you like, as they don’t open any ports (all they do is talk to
the channel backend).

To run a worker server, just run:

python manage.py runworker

Make sure you run this inside an init system or a program like supervisord that can take care of restarting the process
when it exits; the worker server has no retry-on-exit logic, though it will absorb tracebacks from inside consumers and
forward them to stderr.

Make sure you keep an eye on how busy your workers are; if they get overloaded, requests will take longer and longer
to return as the messages queue up (until the expiry or capacity limit is reached, at which point HTTP connections will

26 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

http://asgi-rabbitmq.readthedocs.io/en/latest/

test Documentation, [U+91CB][U+51FA] 1.1.5

start dropping).

In a more complex project, you won’t want all your channels being served by the same workers, especially if you have
long-running tasks (if you serve them from the same workers as HTTP requests, there’s a chance long-running tasks
could block up all the workers and delay responding to HTTP requests).

To manage this, it’s possible to tell workers to either limit themselves to just certain channel names or ignore specific
channels using the --only-channels and --exclude-channels options. Here’s an example of configuring
a worker to only serve HTTP and WebSocket requests:

python manage.py runworker --only-channels=http.* --only-channels=websocket.*

[U+6216][U+662F][U+544A][U+8A34][U+5DE5][U+4F5C][U+8005][U+5FFD][U+7565] “thumb-
nail” channel [U+4E0A][U+7684][U+6240][U+6709][U+8A0A][U+606F]

python manage.py runworker --exclude-channels=thumbnail

[U+57F7][U+884C][U+4ECB][U+9762][U+4F3A][U+670D][U+5668]

The final piece of the puzzle is the “interface servers”, the processes that do the work of taking incoming requests and
loading them into the channels system.

If you want to support WebSockets, long-poll HTTP requests and other Channels features, you’ll need to run a native
ASGI interface server, as the WSGI specification has no support for running these kinds of requests concurrently. We
ship with an interface server that we recommend you use called Daphne; it supports WebSockets, long-poll HTTP
requests, HTTP/2 and performs quite well.

You can just keep running your Django code as a WSGI app if you like, behind something like uwsgi or gunicorn;
this won’t let you support WebSockets, though, so you’ll need to run a separate interface server to terminate those
connections and configure routing in front of your interface and WSGI servers to route requests appropriately.

If you use Daphne for all traffic, it auto-negotiates between HTTP and WebSocket, so there’s no need to have your
WebSockets on a separate domain or path (and they’ll be able to share cookies with your normal view code, which
isn’t possible if you separate by domain rather than path).

To run Daphne, it just needs to be supplied with a channel backend, in much the same way a WSGI server needs to
be given an application. First, make sure your project has an asgi.py file that looks like this (it should live next to
wsgi.py):

import os
from channels.asgi import get_channel_layer

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "my_project.settings")

channel_layer = get_channel_layer()

Then, you can run Daphne and supply the channel layer as the argument:

daphne my_project.asgi:channel_layer

Like runworker, you should place this inside an init system or something like supervisord to ensure it is re-run if it
exits unexpectedly.

If you only run Daphne and no workers, all of your page requests will seem to hang forever; that’s because Daphne
doesn’t have any worker servers to handle the request and it’s waiting for one to appear (while runserver also uses
Daphne, it launches worker threads along with it in the same process). In this scenario, it will eventually time out and
give you a 503 error after 2 minutes; you can configure how long it waits with the --http-timeout command line
argument.

2.5. [Please insert \PrerenderUnicode{\unichar{37096}} into preamble][Please insert
\PrerenderUnicode{\unichar{32626}} into preamble]

27

http://github.com/django/daphne/

test Documentation, [U+91CB][U+51FA] 1.1.5

Deploying new versions of code

One of the benefits of decoupling the client connection handling from work processing is that it means you can run
new code without dropping client connections; this is especially useful for WebSockets.

Just restart your workers when you have new code (by default, if you send them SIGTERM they’ll cleanly exit and
finish running any in-process consumers), and any queued messages or new connections will go to the new workers.
As long as the new code is session-compatible, you can even do staged rollouts to make sure workers on new code
aren’t experiencing high error rates.

There’s no need to restart the WSGI or WebSocket interface servers unless you’ve upgraded the interface server itself
or changed the CHANNEL_LAYER setting; none of your code is used by them, and all middleware and code that can
customize requests is run on the consumers.

You can even use different Python versions for the interface servers and the workers; the ASGI protocol that channel
layers communicate over is designed to be portable across all Python versions.

Running just ASGI

If you are just running Daphne to serve all traffic, then the configuration above is enough where you can just expose
it to the Internet and it’ll serve whatever kind of request comes in; for a small site, just the one Daphne instance and
four or five workers is likely enough.

However, larger sites will need to deploy things at a slightly larger scale, and how you scale things up is different from
WSGI; see Scaling Up.

Running ASGI alongside WSGI

ASGI and its canonical interface server Daphne are both relatively new, and so you may not wish to run all your traffic
through it yet (or you may be using specialized features of your existing WSGI server).

If that’s the case, that’s fine; you can run Daphne and a WSGI server alongside each other, and only have Daphne
serve the requests you need it to (usually WebSocket and long-poll HTTP requests, as these do not fit into the WSGI
model).

To do this, just set up your Daphne to serve as we discussed above, and then configure your load-balancer or front
HTTP server process to dispatch requests to the correct server - based on either path, domain, or if you can, the
Upgrade header.

Dispatching based on path or domain means you’ll need to design your WebSocket URLs carefully so you can always
tell how to route them at the load-balancer level; the ideal thing is to be able to look for the Upgrade: WebSocket
header and distinguish connections by this, but not all software supports this and it doesn’t help route long-poll HTTP
connections at all.

You could also invert this model, and have all connections go to Daphne by default and selectively route some back to
the WSGI server, if you have particular URLs or domains you want to use that server on.

Running on a PaaS

To run Django with channels enabled on a Platform-as-a-Service (PaaS), you will need to ensure that your PaaS
allows you to run multiple processes at different scaling levels; one group will be running Daphne, as a pure Python
application (not a WSGI application), and the other should be running runworker.

The PaaS will also either have to provide either its own Redis service or a third process type that lets you run Redis
yourself to use the cross-network channel backend; both interface and worker processes need to be able to see Redis,
but not each other.

28 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

If you are only allowed one running process type, it’s possible you could combine both interface server and worker
into one process using threading and the in-memory backend; however, this is not recommended for production use as
you cannot scale up past a single node without groups failing to work.

Scaling Up

Scaling up a deployment containing channels (and thus running ASGI) is a little different to scaling a WSGI deploy-
ment.

The fundamental difference is that the group mechanic requires all servers serving the same site to be able to see each
other; if you separate the site up and run it in a few, large clusters, messages to groups will only deliver to WebSockets
connected to the same cluster. For some site designs this will be fine, and if you think you can live with this and design
around it (which means never designing anything around global notifications or events), this may be a good way to go.

For most projects, you’ll need to run a single channel layer at scale in order to achieve proper group delivery. Different
backends will scale up differently, but the Redis backend can use multiple Redis servers and spread the load across
them using sharding based on consistent hashing.

The key to a channel layer knowing how to scale a channel’s delivery is if it contains the ! character or not, which
signifies a single-reader channel. Single-reader channels are only ever connected to by a single process, and so in the
Redis case are stored on a single, predictable shard. Other channels are assumed to have many workers trying to read
them, and so messages for these can be evenly divided across all shards.

Django channels are still relatively new, and so it’s likely that we don’t yet know the full story about how to scale things
up; we run large load tests to try and refine and improve large-project scaling, but it’s no substitute for actual traffic.
If you’re running channels at scale, you’re encouraged to send feedback to the Django team and work with us to hone
the design and performance of the channel layer backends, or you’re free to make your own; the ASGI specification is
comprehensive and comes with a conformance test suite, which should aid in any modification of existing backends
or development of new ones.

[U+4E00][U+822C][U+6D88][U+8CBB][U+8005]

Much like Django’s class-based views, Channels has class-based consumers. They provide a way for you to arrange
code so it’s highly modifiable and inheritable, at the slight cost of it being harder to figure out the execution path.

We recommend you use them if you find them valuable; normal function-based consumers are also entirely valid,
however, and may result in more readable code for simpler tasks.

There is one base generic consumer class, BaseConsumer, that provides the pattern for method dispatch and is
the thing you can build entirely custom consumers on top of, and then protocol-specific subclasses that provide extra
utility - for example, the WebsocketConsumer provides automatic group management for the connection.

When you use class-based consumers in routing, you need to use route_class rather than route; route_class
knows how to talk to the class-based consumer and extract the list of channels it needs to listen on from it directly,
rather than making you pass it in explicitly.

[U+9019][U+662F][U+4E00][U+500B][U+8DEF][U+7531][U+6848][U+4F8B]:

from channels import route, route_class

channel_routing = [
route_class(consumers.ChatServer, path=r"^/chat/"),
route("websocket.connect", consumers.ws_connect, path=r"^/$"),

]

2.6. [Please insert \PrerenderUnicode{\unichar{19968}} into preamble][Please insert
\PrerenderUnicode{\unichar{33324}} into preamble][Please insert
\PrerenderUnicode{\unichar{28040}} into preamble][Please insert
\PrerenderUnicode{\unichar{36027}} into preamble][Please insert
\PrerenderUnicode{\unichar{32773}} into preamble]

29

test Documentation, [U+91CB][U+51FA] 1.1.5

Class-based consumers are instantiated once for each message they consume, so it’s safe to store things on self (in
fact, self.message is the current message by default, and self.kwargs are the keyword arguments passed in
from the routing).

[U+57FA][U+790E]

The BaseConsumer class is the foundation of class-based consumers, and what you can inherit from if you wish to
build your own entirely from scratch.

[U+4F60][U+4F7F][U+7528][U+5B83][U+5982][U+9019][U+500B][U+FF1A]

from channels.generic import BaseConsumer

class MyConsumer(BaseConsumer):

method_mapping = {
"channel.name.here": "method_name",

}

def method_name(self, message, **kwargs):
pass

All you need to define is the method_mapping dictionary, which maps channel names to method names. The base
code will take care of the dispatching for you, and set self.message to the current message as well.

If you want to perfom more complicated routing, you’ll need to override the dispatch() and channel_names()
methods in order to do the right thing; remember, though, your channel names cannot change during runtime and must
always be the same for as long as your process runs.

BaseConsumer and all other generic consumers that inherit from it provide two instance variables on the class:

• self.message, the Message object representing the message the consumer was called for.

• self.kwargs, keyword arguments from the [U+8DEF][U+7531]

WebSockets

There are two WebSockets generic consumers; one that provides group management, simpler send/receive methods,
and basic method routing, and a subclass which additionally automatically serializes all messages sent and receives
using JSON.

The basic WebSocket generic consumer is used like this:

from channels.generic.websockets import WebsocketConsumer

class MyConsumer(WebsocketConsumer):

Set to True to automatically port users from HTTP cookies
(you don't need channel_session_user, this implies it)
http_user = True

Set to True if you want it, else leave it out
strict_ordering = False

def connection_groups(self, **kwargs):
"""
Called to return the list of groups to automatically add/remove

30 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

this connection to/from.
"""
return ["test"]

def connect(self, message, **kwargs):
"""
Perform things on connection start
"""
Accept the connection; this is done by default if you don't override
the connect function.
self.message.reply_channel.send({"accept": True})

def receive(self, text=None, bytes=None, **kwargs):
"""
Called when a message is received with either text or bytes
filled out.
"""
Simple echo
self.send(text=text, bytes=bytes)

def disconnect(self, message, **kwargs):
"""
Perform things on connection close
"""
pass

You can call self.send inside the class to send things to the connection’s reply_channel automatically. Any
group names returned from connection_groups are used to add the socket to when it connects and to remove it
from when it disconnects; you get keyword arguments too if your URL path, say, affects which group to talk to.

[U+53E6][U+5916][U+FF0C]”self.path”[U+5C6C][U+6027][U+53EA][U+8A2D][U+65BC][U+76EE][U+524D][U+7684]URL[U+8DEF][U+5F91]

The JSON-enabled consumer looks slightly different:

from channels.generic.websockets import JsonWebsocketConsumer

class MyConsumer(JsonWebsocketConsumer):

Set to True if you want it, else leave it out
strict_ordering = False

def connection_groups(self, **kwargs):
"""
Called to return the list of groups to automatically add/remove
this connection to/from.
"""
return ["test"]

def connect(self, message, **kwargs):
"""
Perform things on connection start
"""
pass

def receive(self, content, **kwargs):
"""
Called when a message is received with decoded JSON content
"""

2.6. [Please insert \PrerenderUnicode{\unichar{19968}} into preamble][Please insert
\PrerenderUnicode{\unichar{33324}} into preamble][Please insert
\PrerenderUnicode{\unichar{28040}} into preamble][Please insert
\PrerenderUnicode{\unichar{36027}} into preamble][Please insert
\PrerenderUnicode{\unichar{32773}} into preamble]

31

test Documentation, [U+91CB][U+51FA] 1.1.5

Simple echo
self.send(content)

def disconnect(self, message, **kwargs):
"""
Perform things on connection close
"""
pass

Optionally provide your own custom json encoder and decoder
@classmethod
def decode_json(cls, text):
return my_custom_json_decoder(text)
#
@classmethod
def encode_json(cls, content):
return my_custom_json_encoder(content)

For this subclass, receive only gets a content argument that is the already-decoded JSON as Python datastruc-
tures; similarly, send now only takes a single argument, which it JSON-encodes before sending down to the client.

Note that this subclass still can’t intercept Group.send() calls to make them into JSON automatically, but it does
provide self.group_send(name, content) that will do this for you if you call it explicitly.

self.close() is also provided to easily close the WebSocket from the server end with an optional status code once
you are done with it.

WebSocket Multiplexing

Channels provides a standard way to multiplex different data streams over a single WebSocket, called a
Demultiplexer.

It expects JSON-formatted WebSocket frames with two keys, stream and payload, and will match the stream
against the mapping to find a channel name. It will then forward the message onto that channel while preserving
reply_channel, so you can hook consumers up to them directly in the routing.py file, and use authentication
decorators as you wish.

[U+57FA][U+65BC][U+6D88][U+8CBB][U+8005][U+7684][U+4F7F][U+7528][U+6848][U+4F8B][U+FF1A]

from channels.generic.websockets import WebsocketDemultiplexer, JsonWebsocketConsumer

class EchoConsumer(JsonWebsocketConsumer):
def connect(self, message, multiplexer, **kwargs):

Send data with the multiplexer
multiplexer.send({"status": "I just connected!"})

def disconnect(self, message, multiplexer, **kwargs):
print("Stream %s is closed" % multiplexer.stream)

def receive(self, content, multiplexer, **kwargs):
Simple echo
multiplexer.send({"original_message": content})

class AnotherConsumer(JsonWebsocketConsumer):
def receive(self, content, multiplexer=None, **kwargs):

Some other actions here

32 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

pass

class Demultiplexer(WebsocketDemultiplexer):

Wire your JSON consumers here: {stream_name : consumer}
consumers = {

"echo": EchoConsumer,
"other": AnotherConsumer,

}

Optionally provide a custom multiplexer class
multiplexer_class = MyCustomJsonEncodingMultiplexer

The multiplexer allows the consumer class to be independent of the stream name. It holds the stream name and
the demultiplexer on the attributes stream and demultiplexer.

The data binding code will also send out messages to clients in the same format, and you can encode things in this
format yourself by using the WebsocketDemultiplexer.encode class method.

[U+6703][U+671F][U+548C][U+4F7F][U+7528][U+8005]

If you wish to use channel_session or channel_session_user with a class-based consumer, simply set
one of the variables in the class body:

class MyConsumer(WebsocketConsumer):

channel_session_user = True

This will run the appropriate decorator around your handler methods, and provide message.channel_session
and message.user on the message object - both the one passed in to your handler as an argument as well as
self.message, as they point to the same instance.

And if you just want to use the user from the django session, add http_user:

class MyConsumer(WebsocketConsumer):

http_user = True

This will give you message.user, which will be the same as request.user would be on a regular View.

Applying Decorators

To apply decorators to a class-based consumer, you’ll have to wrap a functional part of the consumer; in this case,
get_handler is likely the place you want to override; like so:

class MyConsumer(WebsocketConsumer):

def get_handler(self, *args, **kwargs):
handler = super(MyConsumer, self).get_handler(*args, **kwargs)
return your_decorator(handler)

You can also use the Django method_decorator utility to wrap methods that have message as their first posi-
tional argument - note that it won’t work for more high-level methods, like WebsocketConsumer.receive.

2.6. [Please insert \PrerenderUnicode{\unichar{19968}} into preamble][Please insert
\PrerenderUnicode{\unichar{33324}} into preamble][Please insert
\PrerenderUnicode{\unichar{28040}} into preamble][Please insert
\PrerenderUnicode{\unichar{36027}} into preamble][Please insert
\PrerenderUnicode{\unichar{32773}} into preamble]

33

test Documentation, [U+91CB][U+51FA] 1.1.5

As route

Instead of making routes using route_class you may use the as_route shortcut. This function takes route filters
([U+7BE9][U+9078][U+5668]) as kwargs and returns route_class. For example:

from . import consumers

channel_routing = [
consumers.ChatServer.as_route(path=r"^/chat/"),

]

Use the attrs dict keyword for dynamic class attributes. For example you have the generic consumer:

class MyGenericConsumer(WebsocketConsumer):
group = 'default'
group_prefix = ''

def connection_groups(self, **kwargs):
return ['_'.join(self.group_prefix, self.group)]

You can create consumers with different group and group_prefix with attrs, like so:

from . import consumers

channel_routing = [
consumers.MyGenericConsumer.as_route(path=r"^/path/1/",

attrs={'group': 'one', 'group_prefix': 'pre'}
→˓),

consumers.MyGenericConsumer.as_route(path=r"^/path/2/",
attrs={'group': 'two', 'group_prefix':

→˓'public'}),
]

[U+8DEF][U+7531]

Channels [U+4E2D][U+7684][U+8DEF][U+7531][U+662F][U+4F7F][U+7528][U+4E00][U+500B][U+8F03]
Django [U+6838][U+5FC3][U+7C21][U+55AE][U+7684][U+7CFB][U+7D71][U+4F86][U+9054][U+6210][U+7684][U+3002][U+7D66][U+4E88][U+4E00][U+500B][U+6240][U+6709][U+53EF][U+80FD][U+8DEF][U+7531][U+7684][U+5E8F][U+5217][U+FF0C]Channels
[U+5C07][U+6703][U+904D][U+6B77][U+6240][U+6709][U+7684][U+53EF][U+80FD][U+76F4][U+5230][U+767C][U+73FE][U+4E00][U+500B][U+76F8][U+7B26][U+7684][U+8DEF][U+7531][U+FF0C][U+7136][U+5F8C][U+8A72][U+8DEF][U+7531][U+7684]
consumer [U+5C07][U+6703][U+88AB][U+57F7][U+884C][U+3002]

The difference comes, however, in the fact that Channels has to route based on more than just URL; channel name
is the main thing routed on, and URL path is one of many other optional things you can route on, depending on the
protocol (for example, imagine email consumers - they would route on domain or recipient address instead).

The routing Channels takes is just a list of routing objects - the three built in ones are route, route_class and
include, but any object that implements the routing interface will work:

• A method called match, taking a single message as an argument and returning None for no match or a tuple
of (consumer, kwargs) if matched.

• [U+6709][U+500B][U+529F][U+80FD][U+9375][U+53EB]”channel_names”[U+53EF][U+56DE][U+8986][U+4E00][U+7D44][U+53EF][U+642D][U+914D][U+7684]
channel [U+540D][U+7A31][U+FF0C][U+9019][U+4F7F] channel
[U+5C64][U+53EF][U+4EE5][U+7BA1][U+63A7][U+4ED6][U+5011]

[U+4EE5][U+4E0B][U+662F][U+4E09][U+500B][U+9810][U+8A2D][U+7684][U+8DEF][U+7531][U+7269][U+4EF6]:

• route: Takes a channel name, a consumer function, and optional filter keyword arguments.

34 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

• route_class: Takes a class-based consumer, and optional filter keyword arguments. Channel names are
taken from the consumer’s channel_names() method.

• include: Takes either a list or string import path to a routing list, and optional filter keyword arguments.

[U+7BE9][U+9078][U+5668]

Filtering is how you limit matches based on, for example, URLs; you use regular expressions, like so:

route("websocket.connect", consumers.ws_connect, path=r"^/chat/$")

[U+5099][U+8A3B]: [U+548C]Django[U+5167][U+5EFA][U+7684]URL Rout-
ing[U+4E0D][U+540C][U+3002][U+5728]Django[U+5167][U+5EFA][U+7684]Routing[U+88E1][U+FF0C][U+7B2C][U+4E00][U+500B]/[U+6703][U+88AB][U+7565][U+53BB][U+FF0C][U+5DF2][U+6C42][U+7C21][U+6F54][U+3002][U+7136][U+800C][U+5728]Channels[U+4E2D][U+FF0C][U+7B2C][U+4E00][U+500B]/[U+662F][U+88AB][U+4FDD][U+7559][U+7684][U+3002][U+9019][U+662F][U+56E0][U+70BA]Routing[U+662F][U+901A][U+7528][U+7684][U+FF0C][U+4E14][U+4E0D][U+662F][U+53EA][U+70BA][U+4E86]URL[U+6240][U+8A2D][U+8A08][U+3002]

[U+4F60][U+53EF][U+4EE5][U+4F7F][U+7528][U+591A][U+91CD][U+904E][U+6FFE][U+5668]:

route("email.receive", comment_response, to_address=r".*@example.com$", subject="^
→˓reply")

Multiple filters are always combined with logical AND; that is, you need to match every filter to have the consumer
called.

Filters can capture keyword arguments to be passed to your function or your class based consumer methods as a
kwarg:

route("websocket.connect", connect_blog, path=r'^/liveblog/(?P<slug>[^/]+)/stream/$')

[U+4F60][U+4E5F][U+53EF][U+4EE5][U+6307][U+5B9A][U+904E][U+6FFE]”include”:

include("blog_includes", path=r'^/liveblog')

When you specify filters on include, the matched portion of the attribute is removed for matches inside the include;
for example, this arrangement matches URLs like /liveblog/stream/, because the outside include strips off
the /liveblog part it matches before passing it inside:

inner_routes = [
route("websocket.connect", connect_blog, path=r'^/stream/'),

]

routing = [
include(inner_routes, path=r'^/liveblog')

]

You can also include named capture groups in the filters on an include and they’ll be passed to the consumer just like
those on route; note, though, that if the keyword argument names from the include and the route clash, the
values from route will take precedence.

[U+8CC7][U+6599][U+7D81][U+5B9A]

Channel [U+7684][U+8CC7][U+6599][U+7D81][U+5B9A][U+67B6][U+69CB][U+6703][U+81EA][U+52D5][U+8655][U+7406]
Django [U+7684] model [U+5BEB][U+5165][U+524D][U+7AEF] view
[U+4E2D][U+FF0C][U+4F8B][U+5982][U+4F7F][U+7528] javascript [U+5F37][U+5316][U+7684][U+7DB2][U+7AD9][U+3002][U+5B83][U+63D0][U+4F9B][U+4E86][U+4E00][U+500B][U+5FEB][U+901F][U+4E14][U+5F48][U+6027][U+7684][U+65B9][U+5F0F][U+4F86][U+7522][U+751F]

2.8. [Please insert \PrerenderUnicode{\unichar{36039}} into preamble][Please insert
\PrerenderUnicode{\unichar{26009}} into preamble][Please insert
\PrerenderUnicode{\unichar{32129}} into preamble][Please insert
\PrerenderUnicode{\unichar{23450}} into preamble]

35

test Documentation, [U+91CB][U+51FA] 1.1.5

Group [U+7684]model [U+6539][U+8B8A]message[U+FF0C][U+4EE5][U+53CA][U+63A5][U+6536]
model [U+767C][U+751F][U+8B8A][U+5316][U+6642][U+7684] message[U+3002]

[U+51FA][U+524D][U+4E3B][U+8981][U+7684][U+76EE][U+6A19][U+662F] Web-
Socket[U+FF0C][U+4F46][U+6B64][U+67B6][U+69CB][U+6709][U+76F8][U+7576][U+7684][U+5F48][U+6027][U+53EF][U+4EE5][U+652F][U+63F4][U+4EFB][U+4F55][U+901A][U+8A0A][U+5354][U+5B9A][U+3002]

[U+8CC7][U+6599][U+7D81][U+5B9A][U+53EF][U+4EE5][U+63A5][U+53D7][U+4EC0][U+9EBC][U+FF1F]

Channel [U+7684][U+8CC7][U+6599][U+7D81][U+5B9A][U+4EE5][U+5169][U+7A2E][U+65B9][U+5F0F][U+904B][U+4F5C]:

• [U+767C][U+9001][U+FF0C][U+7576] model [U+900F][U+904E] Django
[U+767C][U+751F][U+8B8A][U+5316][U+6642][U+FF0C][U+8A0A][U+606F][U+6703][U+767C][U+9001][U+5230][U+76E3][U+807D][U+7684][U+5BA2][U+6236][U+7AEF][U+3002][U+9019][U+5305][U+542B][U+4E86][U+4E8B][U+4F8B][U+7684][U+5EFA][U+7ACB][U+3001][U+66F4][U+65B0][U+8207][U+522A][U+9664][U+3002]

• [U+63A5][U+6536][U+FF0C][U+6A19][U+6E96][U+5316][U+7684][U+8A0A][U+606F][U+683C][U+5F0F][U+FF0C][U+5141][U+8A31][U+5BA2][U+6236][U+7AEF][U+767C][U+9001][U+8A0A][U+606F][U+4F86][U+5EFA][U+7ACB][U+3001][U+66F4][U+65B0][U+8207][U+522A][U+9664][U+4E8B][U+4F8B][U+3002]

[U+6536][U+767C][U+FF0C][U+5141][U+8A31]UI [U+53EF][U+4EE5][U+8A2D][U+8A08][U+6210][U+81EA][U+52D5][U+66F4][U+65B0][U+53CD][U+6620][U+5BA2][U+6236][U+7AEF][U+66F4][U+65B0][U+7684][U+6578][U+503C][U+3002][U+4F8B][U+5982][U+FF0C][U+7DB2][U+8A8C][U+7684][U+5373][U+6642][U+66F4][U+65B0][U+53EF][U+4EE5][U+85C9][U+7531]
PO [U+6587][U+7269][U+4EF6][U+7684][U+8CC7][U+6599][U+7D81][U+5B9A][U+4F86][U+9054][U+6210][U+FF0C][U+800C][U+7DE8][U+8F2F][U+4ECB][U+9762][U+4E5F][U+53EF][U+4EE5][U+85C9][U+6B64][U+540C][U+6B65][U+986F][U+793A][U+5176][U+4ED6][U+4F7F][U+7528][U+8005][U+7684][U+4FEE][U+6539][U+3002]

It has some limitations:

• [U+767C][U+9001][U+7684][U+8CC7][U+6599][U+7D81][U+5B9A][U+662F][U+85C9][U+7531]
signal [U+4F86][U+9054][U+6210][U+7684][U+FF0C][U+6240][U+4EE5][U+5047][U+4F7F]
model [U+7684][U+8CC7][U+6599][U+66F4][U+65B0][U+4E0D][U+662F][U+900F][U+904E]
Django ([U+6216][U+662F][U+4F7F][U+7528] QuerySet [U+7684] .update()
[U+51FD][U+5F0F])[U+FF0C][U+5C31][U+6C92][U+6709][U+89F8][U+767C][U+7684]
signal[U+FF0C][U+6539][U+8B8A][U+7684][U+8A0A][U+606F][U+5C31][U+4E0D][U+6703][U+88AB][U+9001][U+51FA][U+3002][U+4F60][U+53EF][U+4EE5][U+81EA][U+5DF1][U+89F8][U+767C][U+6539][U+8B8A][U+FF0C][U+4F46][U+662F][U+4F60][U+6703][U+9700][U+8981][U+5F9E][U+7CFB][U+7D71][U+4E2D][U+6B63][U+78BA][U+7684][U+4F86][U+6E90][U+4F86][U+9001][U+51FA][U+9019][U+500B]
signal[U+3002]

• [U+5167][U+5EFA][U+7684][U+5E8F][U+5217][U+5316][U+662F][U+4F86][U+81EA]
Django [U+7684][U+5167][U+5EFA][U+529F][U+80FD][U+FF0C][U+5B83][U+53EA][U+80FD][U+8655][U+7406][U+7279][U+5B9A][U+7684][U+8CC7][U+6599][U+578B][U+614B][U+3002][U+5982][U+679C][U+9700][U+8981][U+6709][U+66F4][U+5927][U+7684][U+5F48][U+6027][U+FF0C][U+4F60][U+53EF][U+4EE5][U+900F][U+904E][U+50CF][U+662F]
Django REST [U+67B6][U+69CB][U+7684][U+5E8F][U+5217][U+5316][U+51FD][U+5F0F][U+5EAB][U+4F86][U+9054][U+6210][U+3002]

[U+5165][U+9580]

[U+55AE][U+4E00][U+7684][U+7D81][U+5B9A][U+5B50][U+985E][U+5225][U+7528][U+4F86][U+8655][U+7406]
model [U+767C][U+9001][U+8207][U+63A5][U+6536][U+7684][U+7D81][U+5B9A][U+FF0C][U+4F60][U+4E5F][U+53EF][U+4EE5][U+5728][U+6BCF][U+500B]
model [U+4F7F][U+7528][U+591A][U+500B][U+7D81][U+5B9A] ([U+4F8B][U+5982][U+5982][U+679C][U+4F60][U+60F3][U+4F7F][U+7528][U+4E0D][U+540C][U+7684][U+683C][U+5F0F][U+6216][U+6B0A][U+9650][U+6AA2][U+67E5])[U+3002]

[U+4F60][U+53EF][U+4EE5][U+81EA][U+5E95][U+5C64][U+7684] Binding
[U+5BE6][U+4F5C][U+6240][U+6709][U+9700][U+8981][U+7684][U+51FD][U+5F0F][U+FF0C][U+4F46][U+6211][U+5011][U+9019][U+88E1][U+628A][U+91CD][U+9EDE][U+653E][U+5728]
WebSocket JSON [U+8B8A][U+5F62][U+4E0A][U+FF0C][U+56E0][U+8457][U+9019][U+662F][U+6700][U+7C21][U+55AE][U+7684][U+5165][U+624B][U+9EDE][U+800C][U+4E14][U+6700][U+63A5][U+8FD1][U+4F60][U+53EF][U+80FD][U+9700][U+8981][U+7684][U+90E8][U+5206][U+3002]

[U+5F9E][U+9019][U+88E1][U+958B][U+59CB]:

from django.db import models
from channels.binding.websockets import WebsocketBinding

class IntegerValue(models.Model):

name = models.CharField(max_length=100, unique=True)
value = models.IntegerField(default=0)

class IntegerValueBinding(WebsocketBinding):

model = IntegerValue
stream = "intval"
fields = ["name", "value"]

36 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

@classmethod
def group_names(cls, instance):

return ["intval-updates"]

def has_permission(self, user, action, pk):
return True

[U+9019][U+88E1][U+5B9A][U+7FA9][U+4E00][U+500B] WebSocket
[U+7684][U+7D81][U+5B9A] - [U+5982][U+6B64][U+5C31][U+77E5][U+9053][U+5982][U+4F55][U+9001][U+51FA]
JSON WebSocket [U+683C][U+5F0F][U+7684][U+9801][U+6846] -
[U+4E26][U+4E14][U+63D0][U+4F9B][U+4E09][U+4EF6][U+4F60][U+5FC5][U+9808][U+63D0][U+4F9B][U+7684][U+90E8][U+5206]:

• fields [U+662F][U+4E00][U+500B][U+5E8F][U+5217][U+5316][U+8ACB][U+6C42][U+53EF][U+50B3][U+56DE][U+6B04][U+4F4D][U+7684][U+767D][U+540D][U+55AE][U+3002]Channel
[U+9810][U+8A2D][U+4E0D][U+958B][U+555F][U+6240][U+6709][U+7684][U+6B04][U+4F4D][U+FF0C][U+4E3B][U+8981][U+662F][U+57FA][U+65BC][U+5B89][U+5168][U+6027][U+7684][U+8003][U+91CF][U+3002][U+5982][U+679C][U+4F60][U+60F3][U+5168][U+90E8][U+958B][U+555F][U+7684][U+8A71][U+FF0C][U+628A][U+8A72][U+5217][U+8868][U+8A2D][U+70BA]
["__all__"] [U+5373][U+53EF][U+3002][U+53E6][U+4E00][U+65B9][U+4FBF][U+FF0C][U+4E5F][U+53EF][U+4EE5][U+4F7F][U+7528]
exclude [U+4F86][U+5EFA][U+7ACB][U+9ED1][U+540D][U+55AE][U+3002]

• group_names [U+50B3][U+56DE][U+4E00][U+500B][U+57FA][U+65BC][U+8A72][U+4E8B][U+4F8B][U+7684][U+5916][U+9001][U+66F4][U+65B0][U+7FA4][U+7D44][U+5217][U+8868][U+3002][U+4F8B][U+5982][U+FF0C][U+4F60][U+53EF][U+4EE5][U+767C][U+9001]PO[U+6587][U+5230][U+540D][U+7A31][U+5305][U+542B][U+7236][U+7DB2][U+8A8C]
ID [U+7684][U+4E0D][U+540C][U+5373][U+6642][U+7DB2][U+8A8C][U+4E2D][U+3002][U+9019][U+88E1][U+6211][U+5011][U+53EA][U+7528][U+4E00][U+500B][U+56FA][U+5B9A][U+7684][U+7FA4][U+7D44][U+540D][U+7A31][U+3002][U+57FA][U+65BC]
group_names [U+5982][U+4F55][U+96A8][U+8457][U+4E8B][U+4F8B][U+7684][U+6539][U+8B8A][U+FF0C]Channels
[U+5C07][U+6703][U+8655][U+7406][U+5BA2][U+6236][U+7AEF][U+9700][U+8981][U+7684]
create, update [U+6216] delete [U+7B49][U+8A0A][U+606F]
([U+6216][U+662F][U+6539][U+8B8A][U+662F][U+5C0D][U+5BA2][U+6236][U+7AEF][U+96B1][U+85CF][U+7684])[U+3002]

• has_permission [U+5247][U+50B3][U+56DE][U+4E00][U+500B][U+63A5][U+6536][U+7D81][U+5B9A][U+66F4][U+65B0][U+FF0C][U+662F][U+5426][U+6703][U+88AB]
model [U+57F7][U+884C][U+7684][U+8A31][U+53EF][U+8207][U+5426][U+3002][U+6211][U+5011][U+63A1][U+53D6][U+4E86][U+4E00][U+500B][U+975E][U+5E38][U+4E0D][U+5B89][U+5168][U+7684][U+4F5C][U+6CD5][U+FF0C][U+7E3D][U+662F][U+56DE][U+50B3]
True[U+3002][U+4F46][U+662F][U+9019][U+88E1][U+5C31][U+662F][U+4F60][U+53EF][U+4EE5][U+8B93]
Django [U+505A][U+6AA2][U+67E5][U+6216][U+662F][U+81EA][U+884C][U+64B0][U+5BEB][U+6B0A][U+9650][U+7CFB][U+7D71][U+7684][U+5730][U+65B9][U+3002]

[U+505A][U+70BA][U+53C3][U+8003][U+FF0C] action [U+7E3D][U+662F][U+4EE5][U+4E0B]
"create", "update" [U+6216] "delete" [U+4E4B][U+4E00][U+7684][U+842C][U+570B][U+78BC][U+5B57][U+4E32][U+3002][U+4F60][U+4E5F][U+53EF][U+4EE5][U+63D0][U+4F9B]
WebSocket Multiplexing [U+4E32][U+6D41][U+540D][U+7A31][U+7D66][U+5BA2][U+6236][U+7AEF][U+FF0C][U+5982][U+679C][U+4F7F][U+7528]
WebSocket [U+8CC7][U+6599][U+7D81][U+5B9A][U+FF0C][U+4F60][U+5FC5][U+9808][U+4F7F][U+7528][U+591A][U+5DE5][U+5316][U+3002]

[U+53EA][U+8981][U+5982][U+6B64][U+65B0][U+589E][U+4E00][U+500B][U+7D81][U+5B9A][U+5728][U+532F][U+5165][U+7684][U+5730][U+65B9][U+FF0C][U+767C][U+9001][U+7D81][U+5B9A][U+8A0A][U+606F][U+5C31][U+6703][U+88AB][U+9001][U+51FA][U+FF0C][U+4F46][U+4F60][U+4ECD][U+9700][U+8981][U+63D0][U+4F9B][U+4E00][U+500B]
Consumer [U+4F86][U+63A5][U+53D7][U+9032][U+4F86][U+7684][U+7D81][U+5B9A][U+66F4][U+65B0][U+FF0C][U+4E26][U+4E14][U+5728][U+9023][U+7DDA][U+6642][U+5C07][U+4EBA][U+52A0][U+5230][U+6B63][U+78BA][U+7684][U+7FA4][U+7D44][U+3002]WebSocket
[U+7D81][U+5B9A][U+985E][U+5225][U+4F7F][U+7528][U+6A19][U+6E96][U+7684] Web-
Socket Multiplexing [U+FF0C][U+56E0][U+6B64][U+4F60][U+53EA][U+9700][U+8981][U+4F7F][U+7528][U+5B83][U+3002]

from channels.generic.websockets import WebsocketDemultiplexer
from .binding import IntegerValueBinding

class Demultiplexer(WebsocketDemultiplexer):

consumers = {
"intval": IntegerValueBinding.consumer,

}

def connection_groups(self):
return ["intval-updates"]

[U+5982][U+540C][U+6A19][U+6E96][U+7684][U+4E32][U+6D41][U+5C0D][U+6D88][U+8CBB][U+8005][U+6620][U+5C04][U+FF0C][U+4F60][U+4E5F][U+9700][U+8981][U+6307][U+5B9A]
connection_groups[U+FF0C][U+4E00][U+500B][U+5C07][U+4E0A][U+7DDA][U+4F7F][U+7528][U+8005][U+52A0][U+5165][U+7FA4][U+7D44][U+7684][U+5217][U+8868][U+3002][U+9019][U+4E5F][U+7B26][U+5408]
group_names [U+5728][U+4F60][U+7684][U+7D81][U+5B9A][U+4E0A][U+7684][U+908F][U+8F2F][U+FF0C][U+9019][U+88E1][U+6211][U+5011][U+4F7F][U+7528][U+4E00][U+500B][U+56FA][U+5B9A][U+7684][U+7FA4][U+7D44][U+540D][U+7A31][U+3002][U+8ACB][U+6CE8][U+610F][U+FF0C][U+7D81][U+5B9A][U+6709][U+4E00][U+500B]
.consumer [U+5C6C][U+6027][U+FF0C][U+9019][U+662F][U+4E00][U+500B][U+6A19][U+6E96]
WebSocket-JSON consumer[U+FF0C][U+89E3][U+591A][U+5DE5][U+5668][U+53EF][U+4EE5][U+767C][U+9001][U+89E3][U+958B][U+7684]
websocket.receive [U+8A0A][U+606F][U+7D66][U+9019][U+500B] consumer[U+3002]

2.8. [Please insert \PrerenderUnicode{\unichar{36039}} into preamble][Please insert
\PrerenderUnicode{\unichar{26009}} into preamble][Please insert
\PrerenderUnicode{\unichar{32129}} into preamble][Please insert
\PrerenderUnicode{\unichar{23450}} into preamble]

37

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+7D81][U+5230][U+4F60][U+7684][U+8DEF][U+7531][U+FF0C][U+9019][U+6A23][U+5B50][U+5C31][U+5B8C][U+6210][U+4E86]:

from channels import route_class, route
from .consumers import Demultiplexer
from .models import IntegerValueBinding

channel_routing = [
route_class(Demultiplexer, path="^/binding/"),

]

[U+524D][U+7AEF][U+7684][U+8003][U+91CF][U+9EDE]

You can use the standard Channels WebSocket wrapper to automatically run demultiplexing, and then tie the events
you receive into your frontend framework of choice based on action, pk and data.

[U+5099][U+8A3B]: [U+6211][U+5011][U+9700][U+8981][U+71B1][U+9580] JavaScript
[U+67B6][U+69CB][U+7684][U+8CC7][U+6599][U+7D81][U+5B9A][U+63D2][U+4EF6][U+FF0C][U+5982][U+679C][U+4F60][U+6709][U+8208][U+8DA3][U+63D0][U+4F9B][U+FF0C][U+8ACB][U+548C][U+6211][U+5011][U+806F][U+7D61][U+3002]

[U+5BA2][U+88FD][U+5E8F][U+5217][U+5316]/[U+901A][U+8A0A][U+5354][U+5B9A]

[U+4E0D][U+540C][U+65BC][U+7E7C][U+627F][U+81EA] WebsocketBinding[U+FF0C][U+4F60][U+53EF][U+4EE5][U+76F4][U+63A5][U+7E7C][U+627F][U+81EA][U+5E95][U+5C64][U+7684]
Binding [U+985E][U+5225][U+FF0C][U+7136][U+5F8C][U+81EA][U+5DF1][U+5BE6][U+4F5C][U+5E8F][U+5217][U+5316][U+8207][U+53CD][U+5E8F][U+5217][U+5316][U+3002][U+5728][U+9019][U+90E8][U+5206][U+7684][U+53C3][U+8003][U+6587][U+4EF6][U+5B8C][U+6210][U+4E4B][U+524D][U+FF0C][U+6211][U+5011][U+5EFA][U+8B70][U+53C3][U+8003]
channels/bindings/base.py [U+539F][U+59CB][U+78BC][U+FF0C][U+7A0B][U+5F0F][U+4E2D][U+6709][U+76F8][U+7576][U+5B8C][U+6574][U+7684][U+8A3B][U+89E3][U+3002]

[U+65B7][U+7DDA][U+7684][U+8655][U+7406]

[U+7531][U+65BC]Channel [U+7684][U+8CC7][U+6599][U+7D81][U+5B9A][U+6C92][U+6709][U+5305][U+542B][U+4E8B][U+4EF6][U+7684][U+6B77][U+53F2][U+FF0C][U+4E5F][U+5C31][U+662F][U+8AAA][U+7576][U+7DB2][U+8DEF][U+9023][U+7DDA][U+65B7][U+958B][U+FF0C][U+4F60][U+6703][U+907A][U+5931][U+9019][U+6BB5][U+6642][U+9593][U+767C][U+751F][U+7684][U+4E8B][U+4F8B][U+8A0A][U+606F][U+3002][U+56E0][U+6B64][U+FF0C][U+5EFA][U+8B70][U+7576][U+9023][U+7DDA][U+6062][U+5FA9][U+4E4B][U+5F8C][U+FF0C][U+76F4][U+63A5][U+900F][U+904E]
API [U+4F86][U+91CD][U+65B0][U+8F09][U+5165][U+8CC7][U+6599][U+FF0C][U+800C][U+4E0D][U+8981][U+4F9D][U+8CF4][U+5373][U+6642][U+66F4][U+65B0][U+5728][U+95DC][U+9375][U+7684][U+529F][U+80FD][U+FF0C][U+6216][U+662F][U+8A2D][U+8A08]
UI [U+4F86][U+8655][U+7406][U+8CC7][U+6599][U+907A][U+5931][U+7684][U+554F][U+984C][U+3002]([U+4F8B][U+5982][U+53EA][U+6709][U+66F4][U+65B0][U+6C92][U+6709][U+65B0][U+5EFA][U+6642][U+FF0C][U+4E0B][U+500B][U+66F4][U+65B0][U+6703][U+4FEE][U+6B63][U+5168][U+90E8][U+7684][U+907A][U+5931][U+8CC7][U+6599])

[U+901A][U+9053] WebSocket [U+5305][U+88DD]

Channels ships with a javascript WebSocket wrapper to help you connect to your websocket and send/receive mes-
sages.

First, you must include the javascript library in your template; if you’re using Django’s staticfiles, this is as easy as:

{% load staticfiles %}

{% static "channels/js/websocketbridge.js" %}

If you are using an alternative method of serving static files, the compiled source code is located at channels/
static/channels/js/websocketbridge.js in a Channels installation. We compile the file for you each
release; it’s ready to serve as-is.

The library is deliberately quite low-level and generic; it’s designed to be compatible with any JavaScript code or
framework, so you can build more specific integration on top of it.

To process messages

38 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

const webSocketBridge = new channels.WebSocketBridge();
webSocketBridge.connect('/ws/');
webSocketBridge.listen(function(action, stream) {
console.log(action, stream);

});

To send messages, use the send method

webSocketBridge.send({prop1: 'value1', prop2: 'value1'});

To demultiplex specific streams

webSocketBridge.connect();
webSocketBridge.listen('/ws/');
webSocketBridge.demultiplex('mystream', function(action, stream) {
console.log(action, stream);

});
webSocketBridge.demultiplex('myotherstream', function(action, stream) {
console.info(action, stream);

});

To send a message to a specific stream

webSocketBridge.stream('mystream').send({prop1: 'value1', prop2: 'value1'})

The WebSocketBridge instance exposes the underlaying ReconnectingWebSocket as the socket property. You can use
this property to add any custom behavior. For example

webSocketBridge.socket.addEventListener('open', function() {
console.log("Connected to WebSocket");

})

The library is also available as a npm module, under the name django-channels

[U+901A][U+9053][U+5C64][U+985E][U+578B]

[U+53EF][U+4EE5][U+9078][U+64C7][U+591A][U+7A2E][U+5F8C][U+7AEF][U+FF0C][U+4EE5][U+6EFF][U+8DB3][U+8907][U+96DC][U+6027][U+FF0C][U+541E][U+5410][U+91CF][U+548C][U+53EF][U+64F4][U+5C55][U+6027][U+7684][U+4E0D][U+540C][U+6298][U+8877][U+3002][U+4F60][U+4E5F][U+53EF][U+4EE5][U+5BEB][U+4F60][U+81EA][U+5DF1][U+7684][U+5F8C][U+7AEF][U+FF0C][U+5982][U+679C][U+4F60][U+9858][U+610F][U+FF1B][U+4ED6][U+5011][U+78BA][U+8A8D][U+7684][U+898F][U+7BC4][U+88AB][U+7A31][U+70BA]
ASGI[U+3002][U+53EF][U+4EE5][U+4F7F][U+7528][U+4EFB][U+4F55][U+7B26][U+5408]ASGI[U+7684][U+4FE1][U+9053][U+5C64][U+3002]

Redis

Redis [U+5C64][U+662F][U+904B][U+884C]Channels [U+7684][U+63A8][U+85A6][U+5F8C][U+7AEF][U+FF0C][U+56E0][U+70BA][U+5B83][U+652F][U+6301][U+55AE][U+500B]
Redis [U+670D][U+52D9][U+5668][U+4E0A][U+7684][U+9AD8][U+541E][U+5410][U+91CF][U+4EE5][U+53CA][U+5728][U+5206][U+7247][U+6A21][U+5F0F][U+4E0B][U+5C0D][U+4E00][U+7D44]
Redis [U+670D][U+52D9][U+5668][U+904B][U+884C][U+7684][U+80FD][U+529B][U+3002]

[U+8981][U+4F7F][U+7528] Redis [U+5C64][U+FF0C][U+53EA][U+9700][U+5F9E] PyPI
[U+5B89][U+88DD][U+5B83] ([U+5B83][U+653E][U+5728][U+4E00][U+500B][U+55AE][U+7368][U+7684][U+5305][U+FF0C][U+56E0][U+70BA][U+6211][U+5011][U+4E0D][U+60F3][U+5F37][U+5236][U+4F9D][U+8CF4][U+65BC]
redis-py [U+4E3B][U+5B89][U+88DD]):

pip install -U asgi_redis

[U+9ED8][U+8A8D][U+60C5][U+6CC1][U+4E0B][U+FF0C][U+5B83][U+5C07][U+5617][U+8A66][U+9023][U+63A5][U+5230]
localhost:6379 [U+7684]Redis [U+670D][U+52D9][U+5668][U+FF0C][U+4F46][U+662F][U+4F60][U+53EF][U+4EE5][U+7528]
hosts [U+518D][U+8907][U+5BEB][U+5B83][U+7684] config:

2.10. [Please insert \PrerenderUnicode{\unichar{36890}} into preamble][Please insert
\PrerenderUnicode{\unichar{36947}} into preamble][Please insert
\PrerenderUnicode{\unichar{23652}} into preamble][Please insert
\PrerenderUnicode{\unichar{39006}} into preamble][Please insert
\PrerenderUnicode{\unichar{22411}} into preamble]

39

https://www.npmjs.com/package/django-channels

test Documentation, [U+91CB][U+51FA] 1.1.5

CHANNEL_LAYERS = {
"default": {

"BACKEND": "asgi_redis.RedisChannelLayer",
"ROUTING": "???",
"CONFIG": {

"hosts": [("redis-channel-1", 6379), ("redis-channel-2", 6379)],
},

},
}

[U+5206][U+7247]

[U+5206][U+7247][U+6A21][U+578B][U+57FA][U+65BC][U+4E00][U+81F4][U+6027][U+6563][U+5217]
- [U+7279][U+5225][U+662F] response channels [U+88AB][U+6563][U+5217][U+FF0C][U+7528][U+65BC][U+9078][U+64C7][U+63A5][U+53E3][U+670D][U+52D9][U+5668][U+548C]
worker [U+90FD][U+5C07][U+4F7F][U+7528][U+7684][U+55AE][U+500B] Redis
[U+670D][U+52D9][U+5668][U+3002]

[U+5C0D][U+65BC][U+6B63][U+5E38][U+4FE1][U+9053][U+FF0C][U+7531][U+65BC][U+4EFB][U+4F55][U+5DE5][U+4F5C][U+8005][U+90FD][U+53EF][U+4EE5][U+670D][U+52D9][U+4EFB][U+4F55][U+4FE1][U+9053][U+8ACB][U+6C42][U+FF0C][U+6240][U+4EE5][U+6D88][U+606F][U+7C21][U+55AE][U+5730][U+5728][U+6240][U+6709][U+53EF][U+80FD][U+7684][U+670D][U+52D9][U+5668][U+4E4B][U+9593][U+5206][U+4F48][U+FF0C][U+5DE5][U+4F5C][U+8005][U+5C07][U+9078][U+64C7][U+55AE][U+500B][U+670D][U+52D9][U+5668][U+4F86][U+6536][U+807D][U+3002][U+6CE8][U+610F][U+FF0C][U+5982][U+679C][U+4F60][U+904B][U+884C][U+7684]
Redis [U+670D][U+52D9][U+5668][U+6BD4]worker [U+591A][U+FF0C][U+5F88][U+53EF][U+80FD][U+6709][U+4E9B][U+670D][U+52D9][U+5668][U+6C92][U+6709][U+5DE5][U+4F5C][U+7DDA][U+7A0B][U+76E3][U+807D][U+5B83][U+5011];[U+6211][U+5011][U+5EFA][U+8B70][U+60A8][U+59CB][U+7D42][U+70BA][U+6BCF][U+500B]
Redis [U+670D][U+52D9][U+5668][U+81F3][U+5C11][U+6709][U+5341][U+500B][U+5DE5][U+4F5C][U+7DDA][U+7A0B][U+FF0C][U+4EE5][U+78BA][U+4FDD][U+826F][U+597D][U+7684][U+5206][U+767C][U+3002][U+7136][U+800C][U+FF0C][U+5DE5][U+4F5C][U+8005][U+5C07][U+5B9A][U+671F][U+FF08][U+6BCF][U+4E94][U+79D2][U+5DE6][U+53F3][U+FF09][U+6539][U+8B8A][U+670D][U+52D9][U+5668][U+FF0C][U+56E0][U+6B64][U+6392][U+968A][U+7684][U+6D88][U+606F][U+61C9][U+8A72][U+6700][U+7D42][U+5F97][U+5230][U+97FF][U+61C9][U+3002]

[U+8ACB][U+6CE8][U+610F][U+FF0C][U+5982][U+679C][U+66F4][U+6539][U+5206][U+7247][U+670D][U+52D9][U+5668][U+96C6][U+FF0C][U+60A8][U+9700][U+8981][U+5728][U+4EFB][U+4F55][U+5DE5][U+4F5C][U+4E4B][U+524D][U+91CD][U+65B0][U+555F][U+52D5][U+6240][U+6709][U+63A5][U+53E3][U+670D][U+52D9][U+5668][U+548C][U+5177][U+6709][U+65B0][U+96C6][U+7684][U+5DE5][U+4F5C][U+7DDA][U+7A0B][U+FF0C][U+4E26][U+4E14][U+4EFB][U+4F55][U+6B63][U+5728][U+50B3][U+8F38][U+7684][U+6D88][U+606F][U+90FD][U+5C07][U+4E1F][U+5931][U+FF08][U+5373][U+4F7F][U+6709][U+6301][U+4E45][U+6027][U+FF0C][U+4E5F][U+6703][U+6709][U+FF09][U+3002][U+4E00][U+81F4][U+6027][U+54C8][U+5E0C][U+6A21][U+578B][U+4F9D][U+8CF4][U+65BC][U+5177][U+6709][U+76F8][U+540C][U+8A2D][U+7F6E][U+7684][U+6240][U+6709][U+904B][U+884C][U+7684][U+5BA2][U+6236][U+7AEF][U+3002][U+4EFB][U+4F55][U+914D][U+7F6E][U+932F][U+8AA4][U+7684][U+63A5][U+53E3][U+670D][U+52D9][U+5668][U+6216][U+5DE5][U+4F5C][U+7A0B][U+5E8F][U+5C07][U+522A][U+9664][U+90E8][U+5206][U+6216][U+5168][U+90E8][U+6D88][U+606F][U+3002]

RabbitMQ

RabbitMQ layer is comparable to Redis in terms of latency and throughput. It can work with single RabbitMQ node
and with Erlang cluster.

You need to install layer package from PyPI:

pip install -U asgi_rabbitmq

To use it you also need provide link to the virtual host with granted permissions:

CHANNEL_LAYERS = {
"default": {

"BACKEND": "asgi_rabbitmq.RabbitmqChannelLayer",
"ROUTING": "???",
"CONFIG": {

"url": "amqp://guest:guest@rabbitmq:5672/%2F",
},

},
}

This layer has complete documentation on its own.

IPC

IPC [U+5F8C][U+7AEF][U+4F7F][U+7528] POSIX [U+5171][U+4EAB][U+5167][U+5B58][U+6BB5][U+548C][U+4FE1][U+865F][U+91CF][U+FF0C][U+4EE5][U+5141][U+8A31][U+540C][U+4E00][U+6A5F][U+5668][U+4E0A][U+7684][U+4E0D][U+540C][U+9032][U+7A0B][U+76F8][U+4E92][U+901A][U+4FE1][U+3002]

[U+7531][U+65BC][U+5B83][U+4F7F][U+7528][U+5171][U+4EAB][U+5167][U+5B58][U+FF0C][U+5B83][U+4E0D][U+9700][U+8981][U+4EFB][U+4F55][U+984D][U+5916][U+7684][U+670D][U+52D9][U+5668][U+904B][U+884C][U+4F86][U+5DE5][U+4F5C][U+FF0C][U+4E26][U+4E14][U+5FEB][U+65BC][U+4EFB][U+4F55][U+57FA][U+65BC][U+7DB2][U+7D61][U+7684][U+901A][U+9053][U+5C64][U+3002][U+4F46][U+662F][U+FF0C][U+5B83][U+53EA][U+80FD][U+5728][U+540C][U+4E00][U+53F0][U+6A5F][U+5668][U+4E0A][U+7684][U+9032][U+7A0B][U+4E4B][U+9593][U+904B][U+884C][U+3002]

40 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

http://asgi-rabbitmq.readthedocs.io/en/latest/

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+8B66][U+544A]: IPC [U+5C64][U+53EA][U+5728][U+540C][U+4E00][U+53F0][U+6A5F][U+5668][U+4E0A][U+7684][U+9032][U+7A0B][U+4E4B][U+9593][U+9032][U+884C][U+901A][U+4FE1][U+FF0C][U+96D6][U+7136][U+6700][U+521D][U+53EF][U+80FD][U+6703][U+8A66][U+5716][U+904B][U+884C][U+4E00][U+7D44][U+5177][U+6709][U+81EA][U+5DF1][U+7684][U+57FA][U+65BC]IPC[U+7684][U+9032][U+7A0B][U+96C6][U+5408][U+7684][U+6A5F][U+5668][U+FF0C][U+4F46][U+9019][U+6703][U+5C0E][U+81F4][U+7D44][U+7121][U+6CD5][U+6B63][U+5E38][U+5DE5][U+4F5C];[U+767C][U+9001][U+5230][U+7FA4][U+7D44][U+7684][U+4E8B][U+4EF6][U+5C07][U+53EA][U+6703][U+8F49][U+5230][U+5728][U+540C][U+4E00][U+53F0][U+8A08][U+7B97][U+6A5F][U+4E0A][U+52A0][U+5165][U+7FA4][U+7D44][U+7684][U+90A3][U+4E9B][U+983B][U+9053][U+3002][U+6B64][U+5F8C][U+7AEF][U+50C5][U+7528][U+65BC][U+55AE][U+6A5F][U+90E8][U+7F72][U+3002]

In-memory

in-memory [U+5C64][U+50C5][U+5728][U+55AE][U+500B][U+9032][U+7A0B][U+4E2D][U+904B][U+884C][U+5354][U+8B70][U+670D][U+52D9][U+5668][U+548C][U+5DE5][U+4F5C][U+670D][U+52D9][U+5668][U+6642][U+6709][U+7528];[U+6700][U+5E38][U+898B][U+7684][U+60C5][U+6CC1][U+662F]‘‘runserver‘‘[U+FF0C][U+5176][U+4E2D][U+670D][U+52D9][U+5668][U+7DDA][U+7A0B][U+FF0C][U+9019][U+500B][U+901A][U+9053][U+5C64][U+548C][U+5DE5][U+4F5C][U+7DDA][U+7A0B][U+90FD][U+5728][U+540C][U+4E00][U+500B]
python [U+9032][U+7A0B][U+5167][U+5171][U+5B58][U+3002]

[U+5B83][U+7684][U+8DEF][U+5F91][U+662F]‘‘asgiref.inmemory.ChannelLayer‘‘[U+3002][U+5982][U+679C][U+4F60][U+5617][U+8A66][U+548C]‘‘runworker‘‘[U+4F7F][U+7528][U+9019][U+500B][U+901A][U+9053][U+5C64][U+FF0C][U+5B83][U+5C07][U+9000][U+51FA][U+FF0C][U+56E0][U+70BA][U+5B83][U+4E0D][U+652F][U+6301][U+8DE8][U+9032][U+7A0B][U+901A][U+4FE1][U+3002]

[U+7DE8][U+5BEB][U+81EA][U+5B9A][U+7FA9][U+901A][U+9053][U+5C64]

The interface channel layers present to Django and other software that communicates over them is codified in a
specification called ASGI.

Any channel layer that conforms to the ASGI spec can be used by Django; just set BACKEND to the class to instantiate
and CONFIG to a dict of keyword arguments to initialize the class with.

[U+5EF6][U+9072][U+4F3A][U+670D][U+5668]

Channels [U+88E1][U+9762][U+7684][U+4E00][U+500B][U+9078][U+64C7][U+6027] app
channels.delay [U+5BE6][U+505A][U+4E86] ASGI Delay Protocol.

Server [U+900F][U+904E][U+4E00][U+500B][U+81EA][U+8A02][U+7684] rundelay
[U+6307][U+4EE4][U+FF0C]which listens to the asgi.delay channel for messages to delay.

[U+5F9E][U+5EF6][U+9072][U+5165][U+9580][U+958B][U+59CB]

[U+5B89][U+88DD]app[U+52A0]’channels.delay’[U+5230]’INSTALLED_APPS’:

INSTALLED_APPS = (
...
'channels',
'channels.delay'

)

Run migrate to create the tables

python manage.py migrate

[U+57F7][U+884C]

python manage.py rundelay

[U+73FE][U+5728][U+4F60][U+53EF][U+4EE5][U+958B][U+59CB][U+9032][U+884C][U+5C07][U+8A0A][U+606F][U+5EF6][U+9072]

[U+8A0A][U+606F][U+5EF6][U+9072]

To delay a message by a fixed number of milliseconds use the delay parameter.

[U+9019][U+662F][U+4E00][U+500B][U+6848][U+4F8B][U+FF1A]

2.11. [Please insert \PrerenderUnicode{\unichar{24310}} into preamble][Please insert
\PrerenderUnicode{\unichar{36978}} into preamble][Please insert
\PrerenderUnicode{\unichar{20282}} into preamble][Please insert
\PrerenderUnicode{\unichar{26381}} into preamble][Please insert
\PrerenderUnicode{\unichar{22120}} into preamble]

41

test Documentation, [U+91CB][U+51FA] 1.1.5

from channels import Channel

delayed_message = {
'channel': 'example_channel',
'content': {'x': 1},
'delay': 10 * 1000

}
The message will be delayed 10 seconds by the server and then sent
Channel('asgi.delay').send(delayed_message, immediately=True)

[U+6E2C][U+8A66][U+6D88][U+8CBB][U+8005]

When you want to write unit tests for your new Channels consumers, you’ll realize that you can’t use the standard
Django test client to submit fake HTTP requests - instead, you’ll need to submit fake Messages to your consumers,
and inspect what Messages they send themselves.

We provide a TestCase subclass that sets all of this up for you, however, so you can easily write tests and check
what your consumers are sending.

Channel [U+6E2C][U+8A66][U+6848][U+4F8B]

If your tests inherit from the channels.test.ChannelTestCase base class, whenever you run tests your chan-
nel layer will be swapped out for a captive in-memory layer, meaning you don’t need an external server running to run
tests.

[U+6B64][U+5916][U+FF0C][U+60A8][U+53EF][U+4EE5][U+5C07][U+8A0A][U+606F][U+653E][U+7F6E][U+5230][U+6B64][U+5C64][U+FF0C][U+4E26][U+5E6B][U+52A9][U+60A8][U+6E2C][U+8A66][U+6D88][U+8CBB][U+8005][U+67E5][U+770B][U+8A0A][U+606F][U+767C][U+9001][U+3002]

To inject a message onto the layer, simply call Channel.send() inside any test method on a ChannelTestCase
subclass, like so:

from channels import Channel
from channels.test import ChannelTestCase

class MyTests(ChannelTestCase):
def test_a_thing(self):

This goes onto an in-memory channel, not the real backend.
Channel("some-channel-name").send({"foo": "bar"})

To receive a message from the layer, you can use self.get_next_message(channel), which handles receiv-
ing the message and converting it into a Message object for you (if you want, you can call receive_many on the
underlying channel layer, but you’ll get back a raw dict and channel name, which is not what consumers want).

You can use this both to get Messages to send to consumers as their primary argument, as well as to get Messages
from channels that consumers are supposed to send on to verify that they did.

You can even pass require=True to get_next_message to make the test fail if there is no message on the
channel (by default, it will return you None instead).

Here’s an extended example testing a consumer that’s supposed to take a value and post the square of it to the
"result" channel:

from channels import Channel
from channels.test import ChannelTestCase

class MyTests(ChannelTestCase):

42 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

def test_a_thing(self):
Inject a message onto the channel to use in a consumer
Channel("input").send({"value": 33})
Run the consumer with the new Message object
my_consumer(self.get_next_message("input", require=True))
Verify there's a result and that it's accurate
result = self.get_next_message("result", require=True)
self.assertEqual(result['value'], 1089)

Generic Consumers

You can use ChannelTestCase to test generic consumers as well. Just pass the message object from
get_next_message to the constructor of the class. To test replies to a specific channel, use the reply_channel
property on the Message object. For example:

from channels import Channel
from channels.test import ChannelTestCase

from myapp.consumers import MyConsumer

class MyTests(ChannelTestCase):

def test_a_thing(self):
Inject a message onto the channel to use in a consumer
Channel("input").send({"value": 33})
Run the consumer with the new Message object
message = self.get_next_message("input", require=True)
MyConsumer(message)
Verify there's a reply and that it's accurate
result = self.get_next_message(message.reply_channel.name, require=True)
self.assertEqual(result['value'], 1089)

[U+7FA4][U+7D44]

You can test Groups in the same way as Channels inside a ChannelTestCase; the entire channel layer is flushed
each time a test is run, so it’s safe to do group adds and sends during a test. For example:

from channels import Group
from channels.test import ChannelTestCase

class MyTests(ChannelTestCase):
def test_a_thing(self):

Add a test channel to a test group
Group("test-group").add("test-channel")
Send to the group
Group("test-group").send({"value": 42})
Verify the message got into the destination channel
result = self.get_next_message("test-channel", require=True)
self.assertEqual(result['value'], 42)

2.12. [Please insert \PrerenderUnicode{\unichar{28204}} into preamble][Please insert
\PrerenderUnicode{\unichar{35430}} into preamble][Please insert
\PrerenderUnicode{\unichar{28040}} into preamble][Please insert
\PrerenderUnicode{\unichar{36027}} into preamble][Please insert
\PrerenderUnicode{\unichar{32773}} into preamble]

43

test Documentation, [U+91CB][U+51FA] 1.1.5

Clients

For more complicated test suites you can use the Client abstraction that provides an easy way to test the full life
cycle of messages with a couple of methods: send to sending message with given content to the given channel,
consume to run appointed consumer for the next message, receive to getting replies for client. Very often you
may need to send and than call a consumer one by one, for this purpose use send_and_consume method:

from channels.test import ChannelTestCase, Client

class MyTests(ChannelTestCase):

def test_my_consumer(self):
client = Client()
client.send_and_consume('my_internal_channel', {'value': 'my_value'})
self.assertEqual(client.receive(), {'all is': 'done'})

You can use WSClient for websocket related consumers. It automatically serializes JSON content, manage cookies
and headers, give easy access to the session and add ability to authorize your requests. For example:

consumers.py
class RoomConsumer(JsonWebsocketConsumer):

http_user = True
groups = ['rooms_watchers']

def receive(self, content, **kwargs):
self.send({'rooms': self.message.http_session.get("rooms", [])})
Channel("rooms_receive").send({'user': self.message.user.id,

'message': content['message']}

tests.py
from channels import Group
from channels.test import ChannelTestCase, WSClient

class RoomsTests(ChannelTestCase):

def test_rooms(self):
client = WSClient()
user = User.objects.create_user(

username='test', email='test@test.com', password='123456')
client.login(username='test', password='123456')

client.send_and_consume('websocket.connect', path='/rooms/')
check that there is nothing to receive
self.assertIsNone(client.receive())

test that the client in the group
Group(RoomConsumer.groups[0]).send({'text': 'ok'}, immediately=True)
self.assertEqual(client.receive(json=False), 'ok')

client.session['rooms'] = ['test', '1']
client.session.save()

client.send_and_consume('websocket.receive',
text={'message': 'hey'},
path='/rooms/')

test 'response'

44 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

self.assertEqual(client.receive(), {'rooms': ['test', '1']})

self.assertEqual(self.get_next_message('rooms_receive').content,
{'user': user.id, 'message': 'hey'})

There is nothing to receive
self.assertIsNone(client.receive())

Instead of WSClient.loginmethod with credentials at arguments you may call WSClient.force_login (like
at django client) with the user object.

receive method by default trying to deserialize json text content of a message, so if you need to pass decoding use
receive(json=False), like in the example.

For testing consumers with enforce_ordering initialize HttpClient with ordered flag, but if you wanna
use your own order don’t use it, use content:

client = HttpClient(ordered=True)
client.send_and_consume('websocket.receive', text='1', path='/ws') # order = 0
client.send_and_consume('websocket.receive', text='2', path='/ws') # order = 1
client.send_and_consume('websocket.receive', text='3', path='/ws') # order = 2

manually
client = HttpClient()
client.send('websocket.receive', content={'order': 0}, text='1')
client.send('websocket.receive', content={'order': 2}, text='2')
client.send('websocket.receive', content={'order': 1}, text='3')

calling consume 4 time for `waiting` message with order 1
client.consume('websocket.receive')
client.consume('websocket.receive')
client.consume('websocket.receive')
client.consume('websocket.receive')

[U+61C9][U+7528][U+8DEF][U+7531]

When you need to test your consumers without routes in settings or you want to test your consumers in a
more isolate and atomic way, it will be simpler with apply_routes contextmanager and decorator for your
ChannelTestCase. It takes a list of routes that you want to use and overwrites existing routes:

from channels.test import ChannelTestCase, WSClient, apply_routes

class MyTests(ChannelTestCase):

def test_myconsumer(self):
client = WSClient()

with apply_routes([MyConsumer.as_route(path='/new')]):
client.send_and_consume('websocket.connect', '/new')
self.assertEqual(client.receive(), {'key': 'value'})

Test Data binding with WSClient

As you know data binding in channels works in outbound and inbound ways, so that ways tests in different ways and
WSClient and apply_routes will help to do this. When you testing outbound consumers you need just import

2.12. [Please insert \PrerenderUnicode{\unichar{28204}} into preamble][Please insert
\PrerenderUnicode{\unichar{35430}} into preamble][Please insert
\PrerenderUnicode{\unichar{28040}} into preamble][Please insert
\PrerenderUnicode{\unichar{36027}} into preamble][Please insert
\PrerenderUnicode{\unichar{32773}} into preamble]

45

test Documentation, [U+91CB][U+51FA] 1.1.5

your Binding subclass with specified group_names. At test you can join to one of them, make some changes with
target model and check received message. Lets test IntegerValueBinding from data binding with creating:

from channels.test import ChannelTestCase, WSClient
from channels.signals import consumer_finished

class TestIntegerValueBinding(ChannelTestCase):

def test_outbound_create(self):
We use WSClient because of json encoding messages
client = WSClient()
client.join_group("intval-updates") # join outbound binding

create target entity
value = IntegerValue.objects.create(name='fifty', value=50)

received = client.receive() # receive outbound binding message
self.assertIsNotNone(received)

self.assertTrue('payload' in received)
self.assertTrue('action' in received['payload'])
self.assertTrue('data' in received['payload'])
self.assertTrue('name' in received['payload']['data'])
self.assertTrue('value' in received['payload']['data'])

self.assertEqual(received['payload']['action'], 'create')
self.assertEqual(received['payload']['model'], 'values.integervalue')
self.assertEqual(received['payload']['pk'], value.pk)

self.assertEqual(received['payload']['data']['name'], 'fifty')
self.assertEqual(received['payload']['data']['value'], 50)

assert that is nothing to receive
self.assertIsNone(client.receive())

There is another situation with inbound binding. It is used with WebSocket Multiplexing, So we apply two routes:
websocket route for demultiplexer and route with internal consumer for binding itself, connect to websocket entrypoint
and test different actions. For example:

class TestIntegerValueBinding(ChannelTestCase):

def test_inbound_create(self):
check that initial state is empty
self.assertEqual(IntegerValue.objects.all().count(), 0)

with apply_routes([Demultiplexer.as_route(path='/'),
route("binding.intval", IntegerValueBinding.consumer)]):

client = WSClient()
client.send_and_consume('websocket.connect', path='/')
client.send_and_consume('websocket.receive', path='/', text={

'stream': 'intval',
'payload': {'action': CREATE, 'data': {'name': 'one', 'value': 1}}

})
our Demultiplexer route message to the inbound consumer,
so we need to call this consumer
client.consume('binding.users')

self.assertEqual(IntegerValue.objects.all().count(), 1)

46 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

value = IntegerValue.objects.all().first()
self.assertEqual(value.name, 'one')
self.assertEqual(value.value, 1)

Multiple Channel Layers

If you want to test code that uses multiple channel layers, specify the alias of the layers you want to mock as the
test_channel_aliases attribute on the ChannelTestCase subclass; by default, only the default layer is
mocked.

You can pass an alias argument to get_next_message, Client and Channel to use a different layer too.

Live Server Test Case

You can use browser automation libraries like Selenium or Splinter to check your application against real layer instal-
lation. First of all provide TEST_CONFIG setting to prevent overlapping with running dev environment.

CHANNEL_LAYERS = {
"default": {

"BACKEND": "asgi_redis.RedisChannelLayer",
"ROUTING": "my_project.routing.channel_routing",
"CONFIG": {

"hosts": [("redis-server-name", 6379)],
},
"TEST_CONFIG": {

"hosts": [("localhost", 6379)],
},

},
}

Now use ChannelLiveServerTestCase for your acceptance tests.

from channels.test import ChannelLiveServerTestCase
from splinter import Browser

class IntegrationTest(ChannelLiveServerTestCase):

def test_browse_site_index(self):

with Browser() as browser:

browser.visit(self.live_server_url)
the rest of your integration test...

In the test above Daphne and Channels worker processes were fired up. These processes run your project against the
test database and the default channel layer you spacify in the settings. If channel layer support flush extension, initial
cleanup will be done. So do not run this code against your production environment. When channels infrastructure is
ready default web browser will be also started. You can open your website in the real browser which can execute
JavaScript and operate on WebSockets. live_server_ws_url property is also provided if you decide to run
messaging directly from Python.

By default live server test case will serve static files. To disable this feature override serve_static class attribute.

class IntegrationTest(ChannelLiveServerTestCase):

2.12. [Please insert \PrerenderUnicode{\unichar{28204}} into preamble][Please insert
\PrerenderUnicode{\unichar{35430}} into preamble][Please insert
\PrerenderUnicode{\unichar{28040}} into preamble][Please insert
\PrerenderUnicode{\unichar{36027}} into preamble][Please insert
\PrerenderUnicode{\unichar{32773}} into preamble]

47

test Documentation, [U+91CB][U+51FA] 1.1.5

serve_static = False

def test_websocket_message(self):
JS and CSS are not available in this test.
...

[U+53C3][U+8003]

[U+6D88][U+8CBB][U+8005]

When you configure channel routing, the object assigned to a channel should be a callable that takes exactly one
positional argument, here called message, which is a message object. A consumer is any callable that fits this
definition.

Consumers are not expected to return anything, and if they do, it will be ignored. They may raise channels.
exceptions.ConsumeLater to re-insert their current message at the back of the channel it was on, but be aware
you can only do this so many time (10 by default) until the message is dropped to avoid deadlocking.

[U+8A0A][U+606F]

Message objects are what consumers get passed as their only argument. They encapsulate the basic ASGI message,
which is a dict, with extra information. They have the following attributes:

• content: The actual message content, as a dict. See the ASGI spec or protocol message definition document
for how this is structured.

• channel: A Channel object, representing the channel this message was received on. Useful if one consumer
handles multiple channels.

• reply_channel: A Channel object, representing the unique reply channel for this message, or None if there
isn’t one.

• channel_layer: A ChannelLayer object, representing the underlying channel layer this was received on.
This can be useful in projects that have more than one layer to identify where to send messages the consumer
generates (you can pass it to the constructor of Channel or Group)

Channel

Channel objects are a simple abstraction around ASGI channels, which by default are unicode strings. The constructor
looks like this:

channels.Channel(name, alias=DEFAULT_CHANNEL_LAYER, channel_layer=None)

Normally, you’ll just call Channel("my.channel.name") and it’ll make the right thing, but if you’re in a project
with multiple channel layers set up, you can pass in either the layer alias or the layer object and it’ll send onto that one
instead. They have the following attributes:

• name: The unicode string representing the channel name.

• channel_layer: A ChannelLayer object, representing the underlying channel layer to send messages on.

• send(content): Sends the dict provided as content over the channel. The content should conform to the
relevant ASGI spec or protocol definition.

48 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+7FA4][U+7D44]

Groups represent the underlying ASGI group concept in an object-oriented way. The constructor looks like this:

channels.Group(name, alias=DEFAULT_CHANNEL_LAYER, channel_layer=None)

Like Channel, you would usually just pass a name, but can pass a layer alias or object if you want to send on a
non-default one. They have the following attributes:

• name: The unicode string representing the group name.

• channel_layer: A ChannelLayer object, representing the underlying channel layer to send messages on.

• send(content): Sends the dict provided as content to all members of the group.

• add(channel): Adds the given channel (as either a Channel object or a unicode string name) to the group.
If the channel is already in the group, does nothing.

• discard(channel): Removes the given channel (as either a Channel object or a unicode string name) from
the group, if it’s in the group. Does nothing otherwise.

Channel [U+5C64]

These are a wrapper around the underlying ASGI channel layers that supplies a routing system that maps channels to
consumers, as well as aliases to help distinguish different layers in a project with multiple layers.

You shouldn’t make these directly; instead, get them by alias (default is the default alias):

from channels import channel_layers
layer = channel_layers["default"]

[U+4ED6][U+5011][U+6709][U+4EE5][U+4E0B][U+5C6C][U+6027][U+FF1A]

• alias: The alias of this layer.

• router: An object which represents the layer’s mapping of channels to consumers. Has the following at-
tributes:

– channels: The set of channels this router can handle, as unicode strings

– match(message): Takes a Message and returns either a (consumer, kwargs) tuple specifying the con-
sumer to run and the keyword argument to pass that were extracted via routing patterns, or None, meaning
there’s no route available.

AsgiRequest

This is a subclass of django.http.HttpRequest that provides decoding from ASGI requests, and a few extra
methods for ASGI-specific info. The constructor is:

channels.handler.AsgiRequest(message)

message must be an ASGI http.request format message.

Additional attributes are:

• reply_channel, a Channel object that represents the http.response.? reply channel for this request.

• message, the raw ASGI message passed in the constructor.

2.13. [Please insert \PrerenderUnicode{\unichar{21443}} into preamble][Please insert
\PrerenderUnicode{\unichar{32771}} into preamble]

49

test Documentation, [U+91CB][U+51FA] 1.1.5

AsgiHandler

This is a class in channels.handler that’s designed to handle the workflow of HTTP requests via ASGI messages.
You likely don’t need to interact with it directly, but there are two useful ways you can call it:

• AsgiHandler(message) will process the message through the Django view layer and yield one or more
response messages to send back to the client, encoded from the Django HttpResponse.

• encode_response(response) is a classmethod that can be called with a Django HttpResponse and
will yield one or more ASGI messages that are the encoded response.

Decorators

Channels provides decorators to assist with persisting data and security.

• channel_session: Provides a session-like object called “channel_session” to consumers as a message
attribute that will auto-persist across consumers with the same incoming “reply_channel” value.

Use this to persist data across the lifetime of a connection.

• http_session: Wraps a HTTP or WebSocket connect consumer (or any consumer of messages that
provides a “cookies” or “get” attribute) to provide a “http_session” attribute that behaves like re-
quest.session; that is, it’s hung off of a per-user session key that is saved in a cookie or passed as the
“session_key” GET parameter.

It won’t automatically create and set a session cookie for users who don’t have one - that’s what Session-
Middleware is for, this is a simpler read-only version for more low-level code.

If a message does not have a session we can inflate, the “session” attribute will be None, rather than an
empty session you can write to.

Does not allow a new session to be set; that must be done via a view. This is only an accessor for any
existing session.

• channel_and_http_session: Enables both the channel_session and http_session.

Stores the http session key in the channel_session on websocket.connect messages. It will then
hydrate the http_session from that same key on subsequent messages.

• allowed_hosts_only: Wraps a WebSocket connect consumer and ensures the request originates
from an allowed host.

Reads the Origin header and only passes request originating from a host listed in ALLOWED_HOSTS to
the consumer. Requests from other hosts or with a missing or invalid Origin headers are rejected.

[U+5E38][U+898B][U+554F][U+984C]

[U+70BA][U+4F55][U+4F7F][U+7528]Channels[U+FF0C][U+800C][U+4E0D][U+76F4][U+63A5][U+4F7F][U+7528]
Tornado/gevent/asyncio/ [U+7B49][U+5176][U+4ED6][U+7684][U+5957][U+4EF6]?

Tornado/gevent/asyncio [U+6709][U+4E9B][U+662F][U+7528][U+4F86][U+89E3][U+6C7A][U+4E0D][U+540C][U+7684][U+554F][U+984C][U+3002]Tornado,
gevent [U+8207][U+5176][U+4ED6][U+985E][U+5728][U+9032][U+7A0B][U+4E2D][U+7684][U+975E][U+540C][U+6B65][U+65B9][U+6848][U+662F][U+4F7F][U+7528][U+55AE][U+4E00]
Python [U+7684][U+975E][U+540C][U+6B65][U+89E3][U+6C7A][U+65B9][U+5F0F] -
[U+7576][U+4E00][U+500B]HTTP [U+8ACB][U+6C42][U+6B63][U+5728][U+57F7][U+884C][U+6642][U+57F7][U+884C][U+5176][U+4ED6][U+7684][U+4E8B][U+60C5][U+FF0C][U+6216][U+662F][U+5728][U+55AE][U+4E00][U+9032][U+7A0B][U+4E2D][U+8655][U+7406][U+6578][U+767E][U+500B][U+9023][U+63A5][U+3002]

[U+4F46]Channels [U+4E0D][U+5927][U+76F8][U+540C] - [U+5C0D][U+65BC][U+91DD][U+5C0D]
consumers [U+6240][U+64B0][U+5BEB][U+7684][U+7A0B][U+5F0F][U+78BC][U+90FD][U+6703][U+4EE5][U+540C][U+6B65][U+4F86][U+57F7][U+884C][U+3002][U+4F60][U+53EF][U+4EE5][U+505A][U+6240][U+6709][U+53EF][U+80FD][U+6703][U+963B][U+585E][U+7684][U+6A94][U+6848][U+7CFB][U+7D71][U+547C][U+53EB][U+548C]

50 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

CPU-bound [U+6240][U+7D81][U+5B9A][U+7684][U+4EFB][U+52D9][U+FF0C][U+4F60][U+6240][U+9700][U+8981][U+505A][U+7684][U+5C31][U+53EA][U+662F][U+963B][U+65B7][U+6B63][U+5728][U+57F7][U+884C][U+7684]
worker [U+5176][U+4ED6][U+7684]worker [U+6D41][U+7A0B][U+53C8][U+6703][U+7E7C][U+7E8C][U+958B][U+59CB][U+57F7][U+884C][U+4E26][U+4E14][U+8655][U+7406][U+5176][U+4ED6][U+7684][U+8A0A][U+606F][U+3002]

[U+9019][U+90E8][U+5206][U+539F][U+56E0][U+662F][U+56E0][U+70BA] Django
[U+7A0B][U+5F0F][U+78BC][U+5168][U+90E8][U+90FD][U+662F][U+63A1][U+53D6][U+540C][U+6B65][U+7684][U+65B9][U+5F0F][U+64B0][U+5BEB][U+FF0C][U+5047][U+4F7F][U+5C07][U+5176][U+5168][U+90E8][U+91CD][U+5BEB][U+6210][U+975E][U+540C][U+6B65][U+7684][U+65B9][U+5F0F][U+5E7E][U+4E4E][U+4E0D][U+592A][U+53EF][U+80FD][U+FF0C][U+800C][U+4E14][U+6211][U+5011][U+4E5F][U+8A8D][U+70BA][U+4E00][U+822C][U+7684][U+958B][U+767C][U+4EBA][U+54E1][U+4E5F][U+4E0D][U+9700][U+8981][U+4E00][U+5B9A][U+5F97][U+7DE8][U+5BEB][U+53CB][U+5584][U+7684][U+975E][U+540C][U+6B65][U+7A0B][U+5F0F][U+78BC][U+FF0C][U+9019][U+6A23][U+5F88][U+5BB9][U+6613][U+5C31][U+6703][U+62FF][U+77F3][U+982D][U+7838][U+5230][U+81EA][U+5DF1][U+7684][U+8173];
[U+57F7][U+884C][U+4E00][U+500B][U+7DCA][U+5BC6][U+7684][U+5FAA][U+74B0][U+800C][U+4E0D][U+7528][U+5728][U+4E2D][U+9593][U+904E][U+7A0B]
yield[U+FF0C][U+6216][U+662F][U+5728][U+4E00][U+500B][U+975E][U+5E38][U+7DE9][U+6162][U+7684]
NFS [U+5206][U+4EAB][U+53BB][U+5B58][U+53D6][U+4E00][U+500B][U+6A94][U+6848][U+FF0C][U+800C][U+4F60][U+50C5][U+50C5][U+53EA][U+9700][U+8981][U+5728][U+9032][U+5165][U+6D41][U+7A0B][U+88E1][U+963B][U+65B7][U+5B83][U+3002]

Channels [U+4ECD][U+7136][U+4F7F][U+7528][U+975E][U+540C][U+6B65][U+7684][U+7A0B][U+5F0F][U+78BC][U+FF0C][U+4F46][U+5B83][U+6703][U+88AB][U+9650][U+5236][U+5728][U+63A5][U+53E3][U+5C64]
- [U+7528][U+4F86][U+670D][U+52D9]HTTP[U+FF0C]WebSocket [U+8207][U+5176][U+4ED6][U+8ACB][U+6C42][U+7684][U+884C][U+7A0B][U+3002][U+9019][U+4E9B][U+78BA][U+5BE6][U+662F][U+4F7F][U+7528][U+975E][U+540C][U+6B65][U+7684][U+6846][U+67B6]([U+76EE][U+524D][U+662F]
asyncio [U+548C] Twisted) [U+4F86][U+8655][U+7406][U+8207][U+7BA1][U+7406][U+6240][U+6709][U+7684][U+4E26][U+884C][U+9023][U+63A5][U+FF0C][U+4F46][U+5B83][U+5011][U+4E5F][U+53EF][U+4EE5][U+662F][U+56FA][U+5B9A][U+7684][U+7A0B][U+5F0F][U+78BC];
[U+5C0D][U+65BC][U+7D42][U+7AEF][U+958B][U+767C][U+8005][U+5C07][U+6C38][U+9060][U+4E0D][U+6703][U+78B0][U+89F8][U+5230][U+9019][U+4E9B][U+3002]

[U+4F60][U+53EF][U+4EE5][U+4F7F][U+7528] Python [U+6A19][U+6E96][U+51FD][U+5F0F][U+5EAB][U+4EE5][U+53CA][U+6A21][U+5F0F][U+4F86][U+8655][U+7406][U+6240][U+6709][U+5DE5][U+4F5C][U+FF0C][U+53EA][U+6709]
worker [U+7AF6][U+722D][U+9019][U+4EF6][U+4E8B][U+4F60][U+9700][U+8981][U+6CE8][U+610F]
- [U+5047][U+4F7F][U+4F60][U+8B93]worker [U+6DF9][U+6C92][U+5728][U+7121][U+9650][U+7684][U+8FF4][U+5708][U+4E2D],
[U+4ED6][U+5011][U+7576][U+7136][U+5C31][U+6703][U+505C][U+6B62][U+5DE5][U+4F5C][U+FF0C][U+4F46][U+9019][U+9084][U+662F][U+6BD4][U+55AE][U+4E00][U+884C][U+7A0B][U+57F7][U+884C][U+505C][U+6B62][U+FF0C][U+7B49][U+5F85][U+9032][U+5165][U+4F86][U+5F97][U+597D][U+3002]

[U+70BA][U+4F55][U+4E0D][U+7528] node/go/ [U+7B49][U+4F86][U+4F5C][U+70BA]
Django [U+7684][U+4EE3][U+7406][U+5462]?

[U+6709][U+5E7E][U+500B][U+5F88][U+4E0D][U+932F][U+7684][U+89E3][U+6C7A][U+65B9][U+6848][U+8B93][U+4F60][U+53EF][U+4EE5][U+4F7F][U+7528][U+66F4]
“[U+53CB][U+5584][U+7684][U+975E][U+540C][U+6B65]” [U+8A9E][U+8A00]([U+6216]
Python [U+6846][U+67B6]) [U+8B93] Django [U+6A4B][U+63A5][U+5230] WebSocket -
[U+7D42][U+6B62][U+4ED6][U+5011]([U+6BD4][U+5982]) [U+4E00][U+500B] Node
[U+884C][U+7A0B], [U+7136][U+5F8C][U+4F7F][U+7528][U+53CD][U+5411][U+4EE3][U+7406][U+6A21][U+578B],
[U+6216]Redis[U+4FE1][U+865F][U+6216][U+5176][U+4ED6][U+4E00][U+4E9B][U+6A5F][U+5236][U+5C07][U+5176][U+6A4B][U+63A5][U+5230]Django[U+3002]

[U+5047][U+5982][U+4F60][U+60F3][U+5BE6][U+969B][U+4E0A] Channels
[U+8B93][U+9019][U+4EF6][U+4E8B][U+8B8A][U+5F97][U+66F4][U+5BB9][U+6613][U+9054][U+5230][U+3002][U+5176][U+4E2D][U+7684][U+95DC][U+9375][U+5C31][U+662F]
Channel [U+5F15][U+5165][U+6A19][U+6E96][U+5316][U+7684][U+65B9][U+5F0F][U+4F86][U+904B][U+884C]
event-triggered [U+7684][U+7A0B][U+5F0F][U+78BC][U+7247][U+6BB5][U+FF0C][U+4EE5][U+53CA][U+901A][U+904E][U+547D][U+540D][U+901A][U+9053][U+8DEF][U+7531][U+6D88][U+606F][U+7684][U+6A19][U+6E96][U+5316][U+65B9][U+5F0F][U+FF0C][U+5728][U+5F48][U+6027][U+548C][U+6613][U+7528][U+9593][U+9054][U+5230][U+4E86][U+5E73][U+8861][U+3002]

[U+96D6][U+7136][U+63A5][U+53E3][U+7684][U+670D][U+52D9][U+5668][U+662F][U+4EE5]
Python [U+958B][U+767C][U+FF0C][U+4F46][U+9019][U+4E26][U+4E0D][U+6703][U+5F71][U+97FF][U+6216][U+963B][U+6B62][U+4F60][U+4F7F][U+7528][U+5176][U+4ED6][U+8A9E][U+8A00][U+4F86][U+64B0][U+5BEB][U+63A5][U+53E3][U+4F3A][U+670D][U+5668][U+FF0C][U+53EA][U+8981][U+9075][U+5FAA][U+540C][U+6A23][U+7684]
HTTP/WebSocket/etc. [U+76F8][U+540C][U+7684][U+5E8F][U+5217][U+8A71][U+6A19][U+6E96][U+3002][U+4E8B][U+5BE6][U+4E0A][U+6709][U+53EF][U+80FD][U+6703][U+5728][U+67D0][U+4E9B][U+6642][U+5019][U+767C][U+4F48][U+4E00][U+500B][U+81EA][U+5DF1][U+5BE6][U+73FE][U+7684][U+66FF][U+4EE3][U+4F3A][U+670D][U+5668][U+3002]

[U+70BA][U+4EC0][U+9EBC][U+6C92][U+6709][U+505A][U+5230][U+4E00][U+500B][U+4FDD][U+8B49][U+4EA4][U+4ED8]/[U+91CD][U+8A66][U+6A5F][U+5236][U+FF1F]

Channels [U+5F97][U+8A2D][U+8A08][U+908F][U+8F2F][U+662F][U+9019][U+6A23][U+7684][U+FF0C][U+5B83][U+5141][U+8A31][U+4EFB][U+4F55][U+932F][U+8AA4]
- [U+4E00][U+500B] consumer [U+53EF][U+4EE5][U+767C][U+751F][U+932F][U+8AA4][U+5C0E][U+81F4][U+6C92][U+6709][U+767C][U+9001][U+56DE][U+8986][U+FF0C][U+901A][U+9053][U+5C64][U+53EF][U+4EE5][U+91CD][U+65B0][U+555F][U+7528][U+6216][U+662F][U+4E1F][U+68C4][U+4E00][U+4E9B][U+8A0A][U+606F][U+FF0C][U+9019][U+53EF][U+80FD][U+6703][U+767C][U+751F][U+4F3A][U+670D][U+5668][U+5EF6][U+5B95][U+8207][U+5361][U+9813][U+FF0C][U+4E5F][U+53EF][U+80FD][U+6703][U+6709][U+4E9B][U+65B0][U+9023][U+5165][U+7684][U+5BA2][U+6236][U+7AEF][U+6703][U+88AB][U+62D2][U+7D55][U+3002]

[U+9019][U+662F][U+56E0][U+70BA][U+8A2D][U+8A08][U+4E00][U+500B][U+53EF][U+4EE5][U+5B8C][U+5168][U+5BB9][U+932F][U+7684][U+7CFB][U+7D71][U+FF0C][U+9EDE][U+5230][U+9EDE][U+FF0C][U+6703][U+5C0E][U+81F4][U+541E][U+5410][U+91CF][U+4F4E][U+5230][U+4E00][U+500B][U+96E3][U+4EE5][U+7F6E][U+4FE1][U+7684][U+5730][U+6B65][U+FF0C][U+800C][U+4E14][U+5E7E][U+4E4E][U+6C92][U+6709][U+4EC0][U+9EBC][U+554F][U+984C][U+6703][U+9700][U+8981][U+9019][U+6A23][U+7A0B][U+5EA6][U+7684][U+4FDD][U+8B49][U+3002][U+5047][U+5982][U+4F60][U+5E0C][U+671B][U+4E00][U+8A02][U+7A0B][U+5EA6][U+7684][U+4FDD][U+8B49][U+FF0C][U+4F60][U+53EF][U+4EE5][U+5EFA][U+7ACB][U+5728]
Channels [U+4E4B][U+4E0A][U+4E26][U+4E14][U+65B0][U+589E][U+4ED6][U+FF08][U+4F8B][U+5982][U+FF0C][U+4F7F][U+7528][U+8CC7][U+6599][U+5EAB][U+53BB][U+8A3B][U+8A18][U+9700][U+8981][U+6E05][U+7406][U+7684][U+4E8B][U+FF0C][U+4E26][U+4E14][U+5728][U+904E][U+4E00][U+9663][U+6642][U+9593][U+5F8C][U+91CD][U+65B0][U+767C][U+9001][U+FF0C][U+6216][U+662F][U+91DD][U+5C0D]
consumers [U+8207][U+904E][U+5EA6][U+767C][U+9001][U+8A0A][U+606F][U+7684][U+5C0D][U+8C61][U+505A][U+51AA][U+7B49][U+800C][U+975E][U+6B20][U+9001][U+FF09][U+3002]

[U+4E5F][U+5C31][U+662F][U+FF0C][U+8A2D][U+8A08][U+4E00][U+500B][U+7CFB][U+7D71][U+4F86][U+9810][U+6E2C][U+5B83][U+53EF][U+80FD][U+6703][U+5931][U+6557][U+90E8][U+5206][U+FF0C][U+4E26][U+8A2D][U+8A08][U+6AA2][U+6E2C][U+4EE5][U+53CA][U+6062][U+5FA9][U+8A72][U+72C0][U+614B][U+FF0C][U+800C][U+975E][U+5C07][U+6574][U+500B][U+529F][U+80FD][U+639B][U+5728][U+4E00][U+500B][U+5B8C][U+5168][U+6309][U+7167][U+8A2D][U+8A08][U+5DE5][U+4F5C][U+7684][U+7CFB][U+7D71][U+4E0A][U+3002]
Channels [U+63A1][U+7528][U+9019][U+7A2E][U+601D][U+60F3][U+FF0C][U+4E26][U+4F7F][U+7528][U+5B83][U+4F86][U+63D0][U+4F9B][U+5927][U+591A][U+6578][U+53EF][U+9760][U+7684][U+9AD8][U+541E][U+5410][U+91CF][U+89E3][U+6C7A][U+65B9][U+6848][U+FF0C][U+800C][U+4E0D][U+662F][U+5E7E][U+4E4E]*[U+5B8C][U+5168]*[U+53EF][U+9760][U+7684][U+4F4E][U+541E][U+5410][U+91CF][U+89E3][U+6C7A][U+65B9][U+6848][U+3002]

[U+6211][U+53EF][U+4EE5][U+5728] Django [U+57F7][U+884C] HTTP re-
quests/service call/etc. [U+518D][U+4E0D][U+963B][U+65B7][U+4E0B][U+9032][U+884C][U+5E73][U+884C][U+55CE][U+FF1F]

[U+7121][U+6CD5][U+76F4][U+63A5][U+9054][U+5230] - Channels
[U+53EA][U+5141][U+8A31] consumer [U+529F][U+80FD][U+5728][U+958B][U+59CB][U+6642]

2.14. [Please insert \PrerenderUnicode{\unichar{24120}} into preamble][Please insert
\PrerenderUnicode{\unichar{35211}} into preamble][Please insert
\PrerenderUnicode{\unichar{21839}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

51

test Documentation, [U+91CB][U+51FA] 1.1.5

listen channels[U+FF0C][U+9019][U+662F][U+555F][U+52D5][U+5B83][U+7684][U+539F][U+56E0];
[U+60A8][U+7121][U+6CD5][U+5C07] channels [U+4E0A][U+7684][U+4EFB][U+52D9][U+767C][U+9001][U+7D66][U+5176][U+4ED6]
consumer[U+FF0C][U+7136][U+5F8C]*[U+7B49][U+5F85][U+7D50][U+679C]*[U+3002]
[U+4F60][U+53EF][U+4EE5][U+767C][U+9001][U+5B83][U+5011][U+4E26][U+4E14][U+7E7C][U+7E8C][U+FF0C][U+4F46][U+662F][U+4F60][U+6C38][U+9060][U+4E0D][U+80FD][U+963B][U+65B7][U+5728]
consumer [U+7684][U+983B][U+9053][U+4E0A][U+7B49][U+5F85][U+FF0C][U+5426][U+5247][U+4F60][U+6703][U+906D][U+9047]
deadlock[U+FF0C]livelocks [U+548C][U+985E][U+4F3C][U+7684][U+554F][U+984C][U+3002]

[U+9019][U+90E8][U+5206][U+662F][U+4E00][U+500B][U+8A2D][U+8A08][U+7279][U+5FB5]
- [U+5C6C][U+65BC]“[U+56F0][U+96E3][U+7684][U+7570][U+6B65][U+6982][U+5FF5][U+FF0C][U+5F88][U+5BB9][U+6613][U+62FF][U+77F3][U+982D][U+7838][U+81EA][U+5DF1][U+7684][U+8173]”
- [U+540C][U+6642][U+4E5F][U+4FDD][U+6301][U+7C21][U+55AE][U+7684][U+5E95][U+5C64][U+6E20][U+9053][U+5BE6][U+73FE][U+3002]
[U+901A][U+904E][U+4E0D][U+5141][U+8A31][U+9019][U+7A2E][U+963B][U+585E][U+FF0C][U+53EF][U+4EE5][U+70BA][U+901A][U+9053][U+5C64][U+898F][U+5B9A][U+5141][U+8A31][U+6C34][U+5E73][U+7E2E][U+653E][U+548C][U+5206][U+7247][U+7684][U+898F][U+7BC4][U+3002]

[U+4F60][U+6240][U+53EF][U+4EE5][U+505A][U+5F97][U+4E8B][U+FF1A]

• [U+8ABF][U+5EA6][U+6574][U+500B][U+4EFB][U+52D9][U+8CA0][U+8F09][U+8B93][U+5176][U+53EF][U+4EE5][U+5EF6][U+9072][U+5728][U+5F8C][U+53F0][U+904B][U+884C][U+FF0C][U+7136][U+5F8C][U+5B8C][U+6210][U+7576][U+524D][U+4EFB][U+52D9]
- [U+4F8B][U+5982][U+FF0C][U+5728][U+982D][U+50CF][U+4E0A][U+50B3][U+8996][U+5716][U+4E2D][U+5206][U+767C][U+982D][U+50CF][U+7E2E][U+5716][U+4EFB][U+52D9][U+FF0C][U+7136][U+5F8C][U+56DE][U+50B3]
“[U+6211][U+5011][U+5F97][U+5230][U+5B83][U+FF01]” HTTP response[U+3002]

• [U+5C07][U+8A73][U+7D30][U+8A0A][U+606F][U+50B3][U+905E][U+7D66][U+76F8][U+95DC][U+53EF][U+4EE5][U+7E7C][U+7E8C][U+7684][U+5176][U+4ED6][U+4EFB][U+52D9][U+FF0C][U+5C24][U+5176][U+662F][U+8207][U+5C07][U+5B8C][U+6210][U+4F5C][U+696D][U+7684][U+5176][U+4ED6]
consumer [U+76F8][U+95DC][U+806F] channel [U+540D][U+7A31][U+FF0C][U+6216][U+6578][U+64DA][U+7684]
ID [U+6216][U+5176][U+4ED6][U+8A73][U+7D30][U+8A0A][U+606F][U+FF08][U+8ACB][U+8A18][U+4F4F][U+FF0C][U+8A0A][U+606F][U+5167][U+5BB9][U+53EA][U+662F][U+4E00][U+500B][U+53EF][U+4EE5][U+5141][U+8A31][U+653E][U+5165][U+60A8][U+5167][U+5BB9][U+5F97][U+5B57][U+5178][U+FF09]
[U+3002][U+4F8B][U+5982][U+FF0C][U+60A8][U+53EF][U+80FD][U+9700][U+8981][U+7372][U+53D6][U+5716][U+7247][U+FF0C][U+5B58][U+5132][U+5716][U+7247][U+FF0C][U+4E26][U+5C07][U+751F][U+6210][U+7684]
ID [U+548C][U+8981][U+9644][U+52A0][U+5230][U+7684][U+5C0D][U+8C61][U+7684]
ID [U+50B3][U+905E][U+5230][U+4E0D][U+540C] channel [U+7684][U+5404][U+7A2E][U+6A21][U+578B][U+7684][U+901A][U+7528][U+5716][U+7247][U+6293][U+53D6][U+4EFB][U+52D9][U+FF0C][U+5177][U+9AD4][U+53D6][U+6C7A][U+65BC][U+6A21][U+578B]
- [U+60A8][U+5C07][U+5728][U+6D88][U+606F][U+4E2D][U+50B3][U+905E][U+4E0B][U+4E00][U+500B]
channel [U+540D][U+7A31][U+548C][U+76EE][U+6A19][U+5C0D][U+8C61][U+7684]
ID[U+FF0C][U+7136][U+5F8C] consumer [U+53EF][U+4EE5][U+5728][U+5B8C][U+6210][U+5F8C][U+5411][U+8A72]
channel [U+540D][U+7A31][U+767C][U+9001][U+65B0][U+6D88][U+606F][U+3002]

• [U+6709][U+57F7][U+884C][U+8ACB][U+6C42][U+6216][U+7DE9][U+6162][U+7684][U+4EFB][U+52D9][U+FF08][U+8A18][U+4F4F][U+FF0C][U+63A5][U+53E3][U+670D][U+52D9][U+5668]*[U+662F]*[U+4E00][U+500B][U+6703][U+88AB][U+5BEB][U+5165][U+9AD8][U+5EA6][U+975E][U+540C][U+6B65][U+7684][U+5C08][U+696D][U+7A0B][U+5F0F][U+78BC][U+754C][U+9762][U+FF09][U+FF0C][U+7D50][U+675F][U+6642][U+FF0C][U+4ED6][U+5011][U+7684][U+7D50][U+679C][U+767C][U+9001][U+5230][U+53E6][U+500B]
channel[U+3002][U+540C][U+6A23][U+FF0C][U+4F60][U+4E0D][U+80FD][U+5728] con-
sumer [U+5167][U+90E8][U+7B49][U+5F85][U+4E26][U+963B][U+65B7][U+7D50][U+679C][U+FF0C][U+4F46][U+4F60][U+53EF][U+4EE5][U+5728][U+4E0B][U+4E00][U+500B][U+65B0]
channel [U+4E0A][U+63D0][U+4F9B][U+53E6][U+4E00][U+500B] consumer[U+3002]

[U+6211][U+8A72][U+5982][U+4F55][U+8207][U+50B3][U+5165][U+7684][U+9023][U+63A5][U+548C][U+8CC7][U+6599][U+505A][U+95DC][U+806F][U+FF1F]

Channels [U+63D0][U+4F9B]WebSocket [U+8207]Django session [U+548C][U+8A8D][U+8B49][U+7CFB][U+7D71][U+5B8C][U+6574][U+7684][U+652F][U+63F4][U+FF0C][U+4EE5][U+53CA][U+7528][U+65BC][U+4FDD][U+5B58][U+8CC7][U+6599][U+7684][U+6BCF][U+500B]
WebSocket [U+6703][U+8A71][U+FF0C][U+56E0][U+6B64][U+60A8][U+53EF][U+4EE5][U+8F15][U+9B06][U+5730][U+5728][U+6BCF][U+500B][U+9023][U+63A5][U+6216][U+6BCF][U+500B][U+7528][U+6236][U+7684][U+57FA][U+790E][U+4E0A][U+4FDD][U+5B58][U+6578][U+64DA][U+6216][U+662F][U+8CC7][U+6599][U+3002]

[U+5047][U+4F7F][U+4F60][U+9858][U+610F][U+FF0C][U+4E5F][U+53EF][U+4EE5][U+63D0][U+4F9B][U+81EA][U+5DF1][U+7684][U+89E3][U+6C7A][U+65B9][U+6848][U+FF0C][U+9375][U+5165]
message.reply_channel[U+FF0C][U+9019][U+4EE3][U+8868][U+9023][U+63A5][U+7684][U+552F][U+4E00]
channel[U+FF0C][U+4F46][U+8ACB][U+8A18][U+4F4F][U+FF0C][U+7121][U+8AD6][U+4F60][U+5B58][U+5132][U+5728][U+54EA][U+88E1][U+FF0C][U+90FD][U+5FC5][U+9808][U+662F]
network-transparent - [U+5B58][U+5132][U+7269][U+5728][U+5168][U+57DF][U+8B8A][U+6578][U+4E2D][U+4E0D][U+6703][U+5728][U+958B][U+767C][U+4E4B][U+5916][U+4F7F][U+7528][U+3002]

[U+5982][U+4F55][U+8B93][U+975E] Django [U+61C9][U+7528][U+8207]
Channels [U+9032][U+884C][U+901A][U+8A71][U+FF1F]

[U+5047][U+4F7F][U+4F60][U+6709][U+4E00][U+500B][U+5916][U+90E8][U+670D][U+52D9][U+5668][U+6216][U+662F][U+8173][U+672C][U+60F3][U+8207]
Channels [U+6E9D][U+901A][U+FF0C][U+4F60][U+53EF][U+4EE5][U+6709][U+4E00][U+500B][U+9078][U+64C7][U+FF1A]

• If it’s a Python program, and you’ve made an asgi.py file for your project (see [U+90E8][U+7F72]),
you can import the channel layer directly as yourproject.asgi.channel_layer and call send() and
receive_many() on it directly. See the ASGI spec for the API the channel layer presents.

• If you just need to send messages in when events happen, you can make a management command that
calls Channel("namehere").send({...}) so your external program can just call manage.py

52 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

send_custom_event (or similar) to send a message. Remember, you can send onto channels from any
code in your project.

• If neither of these work, you’ll have to communicate with Django over HTTP, WebSocket, or another protocol
that your project talks, as normal.

Channels [U+662F][U+5426][U+652F][U+63F4] Python 2, 3
[U+6216][U+662F] 2+3?

Django-channels [U+53CA][U+5176][U+6240][U+6709][U+76F8][U+4F9D][U+5957][U+4EF6][U+9700][U+8981][U+8207]
Python 2.7, 3.4 [U+53CA][U+66F4][U+9AD8][U+7248][U+672C][U+624D][U+80FD][U+76F8][U+5BB9][U+3002][U+9019][U+5305][U+62EC]Twisted
[U+7684][U+90E8][U+5206] Channels [U+5957][U+4EF6][U+FF08][U+5982]
daohne[U+FF09][U+4F7F][U+7528][U+7684][U+90E8][U+5206][U+3002]

[U+70BA][U+4F55][U+4E0D][U+652F][U+6301] socket.io/SockJS/long poll fall-
back[U+FF1F]

[U+901A][U+904E] HTTP [U+9577][U+8F2A][U+8A62][U+6A21][U+64EC] WebSocket
[U+6BD4][U+7D42][U+6B62]WebSocket [U+9700][U+8981][U+66F4][U+591A][U+7684][U+529F][U+592B];
[U+9023][U+63A5][U+7684][U+67D0][U+4E9B][U+670D][U+52D9][U+5668][U+7AEF][U+72C0][U+614B][U+5FC5][U+9808][U+4FDD][U+5B58][U+5728][U+53EF][U+5F9E][U+6240][U+6709][U+7BC0][U+9EDE][U+8A2A][U+554F][U+7684][U+4F4D][U+7F6E][U+FF0C][U+56E0][U+6B64][U+7576][U+65B0][U+7684][U+9577][U+8F2A][U+8A62][U+9032][U+5165][U+6642][U+FF0C][U+53EF][U+4EE5][U+5C07][U+8A0A][U+606F][U+91CD][U+64AD][U+7D66][U+5B83][U+3002]

[U+51FA][U+65BC][U+9019][U+500B][U+539F][U+56E0][U+FF0C][U+6211][U+5011][U+8A8D][U+70BA][U+5B83][U+4E0D][U+5728]
Channels [U+672C][U+8EAB][U+7684][U+7BC4][U+570D][U+5167][U+FF0C][U+5118][U+7BA1]
Channels [U+548C] Daphne [U+70BA][U+9577][U+6642][U+9593][U+904B][U+884C][U+7684]
HTTP [U+9023][U+63A5][U+63D0][U+4F9B][U+4E86][U+4E00][U+6D41][U+7684][U+652F][U+63F4][U+FF0C][U+4E14][U+4E0D][U+4F54][U+7528][U+5DE5][U+4F5C][U+7DDA][U+7A0B][U+FF08][U+60A8][U+53EF][U+4EE5][U+4F7F][U+7528]
“http.request” [U+800C][U+4E0D][U+767C][U+9001][U+4EFB][U+4F55][U+56DE][U+61C9][U+76F4][U+5230][U+6700][U+5F8C][U+FF0C][U+5C07][U+56DE][U+8986]
channel [U+6DFB][U+52A0][U+5230][U+7FA4][U+7D44][U+FF0C][U+751A][U+81F3][U+53EF][U+4EE5][U+807D][U+53D6]
“http.disconnect” [U+983B][U+9053][U+FF0C][U+544A][U+8A34][U+4F60][U+4EC0][U+9EBC][U+6642][U+5019][U+9577][U+6642][U+9593]
polls [U+63D0][U+524D][U+7D50][U+675F][U+FF09][U+3002]

ASGI ([U+7570][U+6B65][U+4F3A][U+670D][U+5668][U+9598][U+9053][U+4ECB][U+9762])
[U+898F][U+5283][U+8349][U+6848]

[U+5099][U+8A3B]: [U+4ECD][U+5728][U+958B][U+767C][U+4E2D][U+FF0C][U+4F46][U+662F][U+76EE][U+524D][U+5E7E][U+4E4E][U+5B8C][U+6210][U+3002]

[U+6458][U+8981]

[U+8A72][U+6587][U+6A94][U+65E8][U+5728][U+63CF][U+8FF0][U+4E00][U+500B][U+4ECB][U+65BC][U+7DB2][U+7D61][U+5354][U+8B70][U+670D][U+52D9]
([U+5C24][U+5176][U+662F] web [U+670D][U+52D9]) [U+548C] Python
[U+61C9][U+7528][U+4E4B][U+9593][U+7684][U+6A19][U+6E96][U+63A5][U+53E3][U+FF0C][U+80FD][U+5920][U+8655][U+7406][U+591A][U+7A2E][U+901A][U+7528][U+5354][U+8B70][U+985E][U+578B][U+FF0C]([U+5305][U+62EC]
HTTP[U+3001]HTTP2 [U+548C] WebSocket)[U+3002]

This base specification is intended to fix in place the set of APIs by which these servers interact and the guarantees
and style of message delivery; each supported protocol (such as HTTP) has a sub-specification that outlines how to
encode and decode that protocol into messages.

The set of sub-specifications is available in the Message Formats section.

2.15. ASGI ([Please insert \PrerenderUnicode{\unichar{30064}} into preamble][Please insert
\PrerenderUnicode{\unichar{27493}} into preamble][Please insert
\PrerenderUnicode{\unichar{20282}} into preamble][Please insert
\PrerenderUnicode{\unichar{26381}} into preamble][Please insert
\PrerenderUnicode{\unichar{22120}} into preamble][Please insert
\PrerenderUnicode{\unichar{38296}} into preamble][Please insert
\PrerenderUnicode{\unichar{36947}} into preamble][Please insert
\PrerenderUnicode{\unichar{20171}} into preamble][Please insert
\PrerenderUnicode{\unichar{38754}} into preamble]) [Please insert
\PrerenderUnicode{\unichar{35215}} into preamble][Please insert
\PrerenderUnicode{\unichar{21123}} into preamble][Please insert
\PrerenderUnicode{\unichar{33609}} into preamble][Please insert
\PrerenderUnicode{\unichar{26696}} into preamble]

53

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+4F9D][U+64DA]

WSGI [U+898F][U+7BC4][U+81EA][U+8A95][U+751F][U+4EE5][U+4F86][U+61C9][U+7528][U+5EE3][U+6CDB][U+FF0C][U+5728][U+4F5C][U+70BA]Python[U+6846][U+67B6][U+548C]web
[U+670D][U+52D9][U+7684][U+9078][U+64C7][U+4E0A][U+64C1][U+6709][U+975E][U+5E38][U+597D][U+7684][U+9748][U+6D3B][U+6027][U+3002][U+4F46][U+FF0C][U+56E0][U+70BA][U+662F][U+91DD][U+5C0D]HTTP[U+98A8][U+683C][U+7684][U+8ACB][U+6C42][U+97FF][U+61C9][U+6A21][U+578B][U+505A][U+7684][U+8A2D][U+8A08][U+FF0C][U+52A0][U+4E0A][U+8D8A][U+4F86][U+8D8A][U+591A][U+4E0D][U+9075][U+5FAA][U+9019][U+7A2E][U+6A21][U+5F0F][U+7684][U+5354][U+8B70][U+9010][U+6F38][U+6210][U+70BA]web[U+7DE8][U+7A0B][U+7684][U+6A19][U+6E96][U+4E4B][U+4E00][U+FF0C]([U+6BD4][U+5982][U+8AAA][U+FF0C]WebSocket)[U+3002][U+6240][U+4EE5][U+9700][U+8981][U+65B0][U+7684][U+6539][U+8B8A][U+3002]

ASGI [U+5617][U+8A66][U+4FDD][U+6301][U+5728][U+4E00][U+500B][U+7C21][U+55AE][U+7684][U+61C9][U+7528][U+63A5][U+53E3][U+7684][U+524D][U+63D0][U+4E0B][U+FF0C][U+63D0][U+4F9B][U+5141][U+8A31][U+6578][U+64DA][U+80FD][U+5920][U+5728][U+4EFB][U+610F][U+6642][U+5019][U+3001][U+88AB][U+4EFB][U+610F][U+61C9][U+7528][U+9032][U+7A0B][U+767C][U+9001][U+548C][U+63A5][U+53D7][U+7684][U+62BD][U+8C61][U+3002]

[U+5B83][U+9084][U+63A1][U+7528][U+5C07][U+5354][U+8B70][U+8F49][U+63DB][U+70BA]
Python [U+517C][U+5BB9][U+FF0C][U+7570][U+6B65][U+53CB][U+597D][U+7684][U+6D88][U+606F][U+96C6][U+4E26][U+5C07][U+5176][U+6982][U+62EC][U+70BA][U+5169][U+90E8][U+5206][U+7684][U+539F][U+5247][U+3002]
[U+4E00][U+500B][U+6A19][U+6E96][U+5316][U+7684][U+901A][U+4FE1][U+63A5][U+53E3][U+548C][U+5468][U+570D][U+7684][U+670D][U+52D9][U+5668][U+FF08][U+672C][U+6587][U+6A94][U+FF09][U+548C][U+4E00][U+5957][U+6A19][U+6E96]
message formats for each protocol 1[U+3002]

Its primary goal is to provide a way to write HTTP/2 and WebSocket code, alongside normal HTTP handling code,
however, and part of this design is ensuring there is an easy path to use both existing WSGI servers and applications,
as a large majority of Python web usage relies on WSGI and providing an easy path forwards is critical to adoption.
Details on that interoperability are covered in /asgi/www.

The end result of this process has been a specification for generalised inter-process communication between Python
processes, with a certain set of guarantees and delivery styles that make it suited to low-latency protocol processing
and response. It is not intended to replace things like traditional task queues, but it is intended that it could be used for
things like distributed systems communication, or as the backbone of a service-oriented architecure for inter-service
communication.

[U+7E3D][U+89BD]

ASGI [U+7531][U+4E09][U+500B][U+4E0D][U+540C][U+7684][U+5143][U+4EF6][U+69CB][U+6210][U+FF1A]protocol
servers[U+3001]channel layer [U+8207] application code[U+3002]Channel layers
[U+662F][U+9019][U+500B][U+5BE6][U+73FE][U+4E2D][U+6700][U+91CD][U+8981][U+7684][U+90E8][U+5206][U+FF0C][U+5B83][U+80FD][U+540C][U+6642][U+5C0D]
protocol servers [U+548C] applications [U+63D0][U+4F9B][U+63A5][U+53E3][U+3002]

[U+4E00][U+500B] channel layer [U+5C0D] protocol server [U+6216]
[U+4E00][U+500B] application server [U+63D0][U+4F9B][U+4E00][U+500B] send
[U+7684][U+53EF][U+547C][U+53EB][U+65B9][U+6CD5][U+FF0C][U+8A72][U+65B9][U+6CD5][U+63A5][U+53D7]
channel name[U+3001]message dict [U+4EE5][U+53CA][U+4E00][U+500B] receive
[U+7684][U+547C][U+53EB][U+65B9][U+6CD5][U+3002][U+4ED6][U+6703][U+7372][U+53D6]
channel names [U+7684] list [U+4E26][U+8FD4][U+56DE][U+6307][U+5B9A][U+983B][U+9053][U+7684][U+4E0B][U+4E00][U+689D][U+53EF][U+7528][U+7684][U+6D88][U+606F][U+3002]

[U+6240][U+4EE5][U+FF0C][U+76F8][U+8F03][U+65BC][U+5728] WSGI
[U+4E0A][U+FF0C][U+6211][U+5011][U+5C07] protocol server [U+76F4][U+63A5][U+6307][U+5411]
application[U+FF0C][U+5728] ASGI [U+88E1][U+FF0C][U+6211][U+5011][U+5C07] protocol
server [U+548C] application [U+540C][U+6642][U+6307][U+5411][U+4E00][U+500B] channel layer
[U+7684][U+5BE6][U+4F8B][U+3002][U+5B83][U+7684][U+76EE][U+7684][U+662F][U+8B93]
applications [U+548C] protocol servers [U+7E3D][U+662F][U+904B][U+884C][U+5728][U+4E0D][U+540C][U+7684][U+9032][U+7A0B][U+6216][U+8005][U+7DDA][U+7A0B][U+4E2D][U+FF0C][U+4E26][U+901A][U+904E]
channel layer [U+9032][U+884C][U+901A][U+4FE1][U+3002]

ASGI tries to be as compatible as possible by default, and so the only implementation of receive that must be
provided is a fully-synchronous, nonblocking one. Implementations can then choose to implement a blocking mode
in this method, and if they wish to go further, versions compatible with the asyncio or Twisted frameworks (or other
frameworks that may become popular, thanks to the extension declaration mechanism).

[U+8A72][U+6587][U+4EF6][U+4E2D][U+5C0D] protocol servers [U+548C] applications
[U+7684][U+5340][U+5206][U+4E3B][U+8981][U+662F][U+70BA][U+4E86][U+660E][U+78BA][U+5F7C][U+6B64][U+8981][U+626E][U+6F14][U+7684][U+89D2][U+8272][U+FF0C][U+540C][U+6642][U+4E5F][U+70BA][U+4E86][U+66F4][U+5BB9][U+6613][U+7684][U+63CF][U+8FF0][U+6982][U+5FF5][U+3002][U+5169][U+8005][U+4E4B][U+9593][U+4E26][U+6C92][U+6709]
code-level [U+7684][U+5340][U+5225][U+FF0C][U+4E14][U+5B8C][U+5168][U+6709][U+53EF][U+80FD][U+5EFA][U+7ACB][U+4E00][U+500B][U+53EF][U+4EE5][U+5728][U+5169][U+500B][U+4E0D][U+540C][U+7684]
channel layer [U+6216] channel name [U+4E4B][U+9593][U+8F49][U+63DB][U+6D88][U+606F][U+FF0C][U+985E][U+4F3C]
middleware-like [U+7684][U+7A0B][U+5F0F][U+78BC][U+3002][U+9810][U+8A08][U+5927][U+90E8][U+5206][U+90E8][U+7F72][U+5C07][U+6703][U+63A1][U+53D6][U+9019][U+7A2E][U+6A21][U+5F0F][U+3002]

54 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

There is even room for a WSGI-like application abstraction on the application server side, with a callable which takes
(channel, message, send_func), but this would be slightly too restrictive for many use cases and does not
cover how to specify channel names to listen on. It is expected that frameworks will cover this use case.

[U+983B][U+9053][U+548C][U+8A0A][U+606F]

[U+5728]ASGI stack [U+88E1][U+9762][U+7684][U+6240][U+6709][U+6E9D][U+901A][U+90FD][U+662F][U+900F][U+904E][U+5728]
channels [U+88E1][U+767C][U+9001]message [U+9032][U+884C][U+7684][U+3002][U+6240][U+6709][U+7684][U+8A0A][U+606F][U+5FC5][U+9808][U+662F]
object [U+6700][U+9802][U+5C64][U+7684] dict[U+FF0C][U+4E26][U+4E14][U+70BA][U+4E86][U+4FDD][U+8B49][U+53EF][U+5E8F][U+5217][U+5316][U+FF0C][U+53EA][U+5141][U+8A31][U+5305][U+542B][U+4EE5][U+4E0B][U+985E][U+578B][U+6578][U+64DA][U+FF1A]

• Byte [U+5B57][U+4E32]

• Unicode [U+5B57][U+4E32]

• Integers (within the signed 64 bit range)

• Floating point numbers (within the IEEE 754 double precision range)

• [U+5217][U+8868]([U+5143][U+7D44][U+6703][U+88AB][U+8996][U+70BA][U+5217][U+8868])

• [U+5B57][U+5178][U+FF08][U+9375][U+5FC5][U+9808][U+662F] Unicode[U+FF09]

• [U+5E03][U+6797]

• None

Channel [U+7684] ID [U+53EA][U+80FD][U+7531]ASCII [U+5B57][U+6BCD][U+3001][U+6578][U+5B57][U+53CA]
periods(.)[U+3001]dashes(-)[U+3001]underscores(_)[U+FF0C][U+4EE5][U+53CA][U+4E00][U+500B][U+53EF][U+9078][U+7684][U+5B57][U+7B26][U+69CB][U+6210][U+FF08][U+898B][U+4E0B][U+6587][U+FF09][U+3002]

Channels [U+662F][U+4E00][U+500B][U+5148][U+9032][U+5148][U+51FA][U+4F47][U+5217][U+FF0C][U+4F47][U+5217][U+88E1][U+7684][U+9805][U+6700][U+591A][U+88AB][U+50B3][U+8F38][U+4E00][U+6B21][U+3002][U+5B83][U+5141][U+8A31][U+591A][U+4F4D][U+5BEB][U+5165][U+8005][U+548C][U+591A][U+4F4D][U+8B80][U+53D6][U+8005][U+FF0C][U+7576][U+50C5][U+6709][U+4E00][U+4F4D][U+8B80][U+53D6][U+8005][U+6642][U+FF0C][U+9700][U+8981][U+8B80][U+53D6][U+6BCF][U+4E00][U+500B][U+5BEB][U+5165][U+7684][U+6D88][U+606F][U+3002][U+5BE6][U+73FE][U+7D55][U+5C0D][U+4E0D][U+80FD][U+5C07][U+4E00][U+689D][U+6D88][U+606F][U+50B3][U+8F38][U+591A][U+6B21][U+6216][U+50B3][U+8F38][U+7D66][U+4E00][U+4F4D][U+4EE5][U+4E0A][U+8B80][U+53D6][U+8005][U+FF0C][U+70BA][U+4E86][U+4FDD][U+8B49][U+9019][U+4E00][U+9650][U+5236][U+FF0C][U+5FC5][U+8981][U+6642][U+5FC5][U+9808][U+6E05][U+7A7A][U+6240][U+6709][U+4FE1][U+606F][U+3002]

In order to aid with scaling and network architecture, a distinction is made between channels that have multiple readers
(such as the http.request channel that web applications would listen on from every application worker process),
single-reader channels that are read from a single unknown location (such as http.request.body?ABCDEF),
and process-specific channels (such as a http.response.A1B2C3!D4E5F6 channel tied to a client socket).

Normal channel names contain no type characters, and can be routed however the backend wishes; in particular, they
do not have to appear globally consistent, and backends may shard their contents out to different servers so that a
querying client only sees some portion of the messages. Calling receive on these channels does not guarantee that
you will get the messages in order or that you will get anything if the channel is non-empty.

Single-reader channel names contain a question mark (?) character in order to indicate to the channel layer that it must
make these channels appear globally consistent. The ? is always preceded by the main channel name (e.g. http.
response.body) and followed by a random portion. Channel layers may use the random portion to help pin the
channel to a server, but reads from this channel by a single process must always be in-order and return messages if the
channel is non-empty. These names must be generated by the new_channel call.

Process-specific channel names contain an exclamation mark (!) that separates a remote and local part. These channels
are received differently; only the name up to and including the ! character is passed to the receive() call, and it
will receive any message on any channel with that prefix. This allows a process, such as a HTTP terminator, to listen
on a single process-specific channel, and then distribute incoming requests to the appropriate client sockets using the
local part (the part after the !). The local parts must be generated and managed by the process that consumes them.
These channels, like single-reader channels, are guaranteed to give any extant messages in order if received from a
single process.

[U+8A0A][U+606F][U+5982][U+679C][U+5728][U+4E00][U+500B] channel
[U+88E1][U+8D85][U+904E][U+8A2D][U+5B9A][U+6642][U+9593][U+672A][U+8B80][U+6703][U+904E][U+671F][U+3002][U+9019][U+500B][U+8A2D][U+5B9A][U+6642][U+9593][U+63A8][U+85A6][U+70BA][U+4E00][U+5206][U+9418][U+FF0C][U+7576][U+7136][U+6700][U+4F73][U+7684][U+8A2D][U+5B9A][U+9084][U+662F][U+53D6][U+6C7A][U+65BC]
channel layer [U+4EE5][U+53CA][U+5B83][U+90E8][U+7F72][U+7684][U+65B9][U+5F0F][U+3002]

The maximum message size is 1MB if the message were encoded as JSON; if more data than this needs to be trans-
mitted it must be chunked or placed onto its own single-reader or process-specific channel (see how HTTP request

2.15. ASGI ([Please insert \PrerenderUnicode{\unichar{30064}} into preamble][Please insert
\PrerenderUnicode{\unichar{27493}} into preamble][Please insert
\PrerenderUnicode{\unichar{20282}} into preamble][Please insert
\PrerenderUnicode{\unichar{26381}} into preamble][Please insert
\PrerenderUnicode{\unichar{22120}} into preamble][Please insert
\PrerenderUnicode{\unichar{38296}} into preamble][Please insert
\PrerenderUnicode{\unichar{36947}} into preamble][Please insert
\PrerenderUnicode{\unichar{20171}} into preamble][Please insert
\PrerenderUnicode{\unichar{38754}} into preamble]) [Please insert
\PrerenderUnicode{\unichar{35215}} into preamble][Please insert
\PrerenderUnicode{\unichar{21123}} into preamble][Please insert
\PrerenderUnicode{\unichar{33609}} into preamble][Please insert
\PrerenderUnicode{\unichar{26696}} into preamble]

55

test Documentation, [U+91CB][U+51FA] 1.1.5

bodies are done, for example). All channel layers must support messages up to this size, but protocol specifications
are encouraged to keep well below it.

[U+8655][U+7406][U+5354][U+8B70]

ASGI [U+8A0A][U+606F][U+4E3B][U+8981][U+6709][U+5169][U+985E][U+FF0C][U+5167][U+90E8][U+61C9][U+7528][U+4E8B][U+4EF6][U+FF08][U+4F8B][U+5982][U+FF0C][U+4E00][U+500B]
channel [U+53EF][U+80FD][U+4F7F][U+7528] queue [U+5C07][U+4E4B][U+524D][U+4E0A][U+50B3][U+7684][U+8996][U+8A0A][U+9032][U+884C][U+7E2E][U+5716][U+FF09][U+FF0C][U+4EE5][U+53CA][U+4F86][U+81EA]/[U+9023][U+63A5][U+5BA2][U+6236][U+7AEF][U+7684][U+5354][U+8B70][U+4E8B][U+4EF6][U+3002]

As such, there are sub-specifications that outline encodings to and from ASGI messages for common protocols like
HTTP and WebSocket; in particular, the HTTP one covers the WSGI/ASGI interoperability. It is recommended that if
a protocol becomes commonplace, it should gain standardized formats in a sub-specification of its own.

The message formats are a key part of the specification; without them, the protocol server and web application might
be able to talk to each other, but may not understand some of what the other is saying. It’s equivalent to the standard
keys in the environ dict for WSGI.

The design pattern is that most protocols will share a few channels for incoming data (for example, http.request,
websocket.connect and websocket.receive), but will have individual channels for sending to each client
(such as http.response!kj2daj23). This allows incoming data to be dispatched into a cluster of application
servers that can all handle it, while responses are routed to the individual protocol server that has the other end of the
client’s socket.

Some protocols, however, do not have the concept of a unique socket connection; for example, an SMS gateway
protocol server might just have sms.receive and sms.send, and the protocol server cluster would take messages
from sms.send and route them into the normal phone network based on attributes in the message (in this case, a
telephone number).

Extensions

Extensions are functionality that is not required for basic application code and nearly all protocol server code, and so
has been made optional in order to enable lightweight channel layers for applications that don’t need the full feature
set defined here.

[U+6B64][U+8655][U+64F4][U+5145][U+5B9A][U+7FA9][U+70BA]:

• groups: Allows grouping of channels to allow broadcast; see below for more.

• flush: Allows easier testing and development with channel layers.

• statistics: Allows channel layers to provide global and per-channel statistics.

• twisted: Async compatibility with the Twisted framework.

• asyncio: Async compatibility with Python 3’s asyncio.

There is potential to add further extensions; these may be defined by a separate specification, or a new version of this
specification.

If application code requires an extension, it should check for it as soon as possible, and hard error if it is not provided.
Frameworks should encourage optional use of extensions, while attempting to move any extension-not-found errors to
process startup rather than message handling.

Groups

While the basic channel model is sufficient to handle basic application needs, many more advanced uses of asyn-
chronous messaging require notifying many users at once when an event occurs - imagine a live blog, for example,
where every viewer should get a long poll response or WebSocket packet when a new entry is posted.

56 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

This concept could be kept external to the ASGI spec, and would be, if it were not for the significant performance
gains a channel layer implementation could make on the send-group operation by having it included - the alternative
being a send_many callable that might have to take tens of thousands of destination channel names in a single call.
However, the group feature is still optional; its presence is indicated by the supports_groups attribute on the
channel layer object.

Thus, there is a simple Group concept in ASGI, which acts as the broadcast/multicast mechanism across channels.
Channels are added to a group, and then messages sent to that group are sent to all members of the group. Channels
can be removed from a group manually (e.g. based on a disconnect event), and the channel layer will garbage collect
“old” channels in groups on a periodic basis.

How this garbage collection happens is not specified here, as it depends on the internal implementation of the channel
layer. The recommended approach, however, is when a message on a process-specific channel expires, the channel
layer should remove that channel from all groups it’s currently a member of; this is deemed an acceptable indication
that the channel’s listener is gone.

Implementation of the group functionality is optional. If it is not provided and an application or protocol server requires
it, they should hard error and exit with an appropriate error message. It is expected that protocol servers will not need
to use groups.

[U+7DDA][U+6027][U+5316]

ASGI [U+7684][U+8A2D][U+8A08][U+76EE][U+7684][U+70BA][U+5728][U+5BE6][U+73FE][U+7121][U+5171][U+4EAB][U+67B6][U+69CB][U+4E0B][U+FF0C][U+5176][U+4E2D][U+8A0A][U+606F][U+53EF][U+4EE5][U+85C9][U+7531][U+4E00][U+7D44]
threads[U+FF0C]processes [U+6216][U+6A5F][U+5668][U+5176][U+4E2D][U+7684][U+4EFB][U+4F55][U+4E00][U+500B][U+4F86][U+8655][U+7406][U+904B][U+884C][U+7684][U+61C9][U+7528][U+7A0B][U+5E8F][U+4EE3][U+78BC][U+3002]

This, of course, means that several different copies of the application could be handling messages simultaneously,
and those messages could even be from the same client; in the worst case, two packets from a client could even be
processed out-of-order if one server is slower than another.

This is an existing issue with things like WSGI as well - a user could open two different tabs to the same site at once
and launch simultaneous requests to different servers - but the nature of the new protocols specified here mean that
collisions are more likely to occur.

Solving this issue is left to frameworks and application code; there are already solutions such as database transactions
that help solve this, and the vast majority of application code will not need to deal with this problem. If ordering
of incoming packets matters for a protocol, they should be annotated with a packet number (as WebSocket is in its
specification).

Single-reader and process-specific channels, such as those used for response channels back to clients, are not subject
to this problem; a single reader on these must always receive messages in channel order.

[U+5BB9][U+91CF]

To provide backpressure, each channel in a channel layer may have a capacity, defined however the layer wishes (it
is recommended that it is configurable by the user using keyword arguments to the channel layer constructor, and
furthermore configurable per channel name or name prefix).

When a channel is at or over capacity, trying to send() to that channel may raise ChannelFull, which indicates to the
sender the channel is over capacity. How the sender wishes to deal with this will depend on context; for example,
a web application trying to send a response body will likely wait until it empties out again, while a HTTP interface
server trying to send in a request would drop the request and return a 503 error.

Process-local channels must apply their capacity on the non-local part (that is, up to and including the ! character),
and so capacity is shared among all of the “virtual” channels inside it.

Sending to a group never raises ChannelFull; instead, it must silently drop the message if it is over capacity, as per
ASGI’s at-most-once delivery policy.

2.15. ASGI ([Please insert \PrerenderUnicode{\unichar{30064}} into preamble][Please insert
\PrerenderUnicode{\unichar{27493}} into preamble][Please insert
\PrerenderUnicode{\unichar{20282}} into preamble][Please insert
\PrerenderUnicode{\unichar{26381}} into preamble][Please insert
\PrerenderUnicode{\unichar{22120}} into preamble][Please insert
\PrerenderUnicode{\unichar{38296}} into preamble][Please insert
\PrerenderUnicode{\unichar{36947}} into preamble][Please insert
\PrerenderUnicode{\unichar{20171}} into preamble][Please insert
\PrerenderUnicode{\unichar{38754}} into preamble]) [Please insert
\PrerenderUnicode{\unichar{35215}} into preamble][Please insert
\PrerenderUnicode{\unichar{21123}} into preamble][Please insert
\PrerenderUnicode{\unichar{33609}} into preamble][Please insert
\PrerenderUnicode{\unichar{26696}} into preamble]

57

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+898F][U+683C][U+660E][U+7D30]

[U+4E00][U+500B] [U+8DEF][U+5F91][U+5716][U+5C64] [U+5FC5][U+9808][U+6709][U+500B][U+7269][U+4EF6][U+5177][U+6709][U+9019][U+4E9B][U+5C6C][U+6027]([U+6240][U+6709][U+51FD][U+6578][U+53C3][U+6578][U+90FD][U+6709][U+65B9][U+4F4D][U+6027])[U+FF1A]

• send(channel, message), a callable that takes two arguments: the channel to send on, as a unicode
string, and the message to send, as a serializable dict.

• receive(channels, block=False), a callable that takes a list of channel names as unicode strings,
and returns with either (None, None) or (channel, message) if a message is available. If block is
True, then it will not return a message arrives (or optionally, a built-in timeout, but it is valid to block forever
if there are no messages); if block is false, it will always return immediately. It is perfectly valid to ignore
block and always return immediately, or after a delay; block means that the call can take as long as it likes
before returning a message or nothing, not that it must block until it gets one.

• new_channel(pattern), a callable that takes a unicode string pattern, and returns a new valid channel
name that does not already exist, by adding a unicode string after the ! or ? character in pattern, and
checking for existence of that name in the channel layer. The pattern must end with ! or ? or this function
must error. If the character is !, making it a process-specific channel, new_channel must be called on the
same channel layer that intends to read the channel with receive; any other channel layer instance may not
receive messages on this channel due to client-routing portions of the appended string.

• MessageTooLarge, the exception raised when a send operation fails because the encoded message is over
the layer’s size limit.

• ChannelFull, the exception raised when a send operation fails because the destination channel is over ca-
pacity.

• extensions, a list of unicode string names indicating which extensions this layer provides, or an empty list
if it supports none. The possible extensions can be seen in Extensions.

A channel layer implementing the groups extension must also provide:

• group_add(group, channel), a callable that takes a channel and adds it to the group given by group.
Both are unicode strings. If the channel is already in the group, the function should return normally.

• group_discard(group, channel), a callable that removes the channel from the group if it is in it,
and does nothing otherwise.

• group_channels(group), a callable that returns an iterable which yields all of the group’s member chan-
nel names. The return value should be serializable with regards to local adds and discards, but best-effort with
regards to adds and discards on other nodes.

• send_group(group, message), a callable that takes two positional arguments; the group to send to, as
a unicode string, and the message to send, as a serializable dict. It may raise MessageTooLarge but cannot
raise ChannelFull.

• group_expiry, an integer number of seconds that specifies how long group membership is valid for after the
most recent group_add call (see Persistence below)

[U+8DEF][U+5F91][U+5C64][U+67B6][U+69CB][U+7684] [U+7D71][U+8A08]
[U+64F4][U+5145][U+529F][U+80FD][U+9700][U+5177][U+5099][U+FF1A]

• global_statistics(), a callable that returns statistics across all channels

• channel_statistics(channel), a callable that returns statistics for specified channel

• in both cases statistics are a dict with zero or more of (unicode string keys):

– messages_count, the number of messages processed since server start

– messages_count_per_second, the number of messages processed in the last second

– messages_pending, the current number of messages waiting

58 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

– messages_max_age, how long the oldest message has been waiting, in seconds

– channel_full_count, the number of times ChannelFull exception has been risen since server start

– channel_full_count_per_second, the number of times ChannelFull exception has been risen in
the last second

• [U+57F7][U+884C][U+53EF][U+63D0][U+4F9B][U+6B21][U+6578][U+7E3D][U+548C][U+3001][U+6BCF][U+79D2][U+6B21][U+6578][U+FF0C][U+6216][U+662F][U+5169][U+8005][U+7686][U+63D0][U+4F9B][U+3002]

A channel layer implementing the flush extension must also provide:

• flush(), a callable that resets the channel layer to a blank state, containing no messages and no groups (if the
groups extension is implemented). This call must block until the system is cleared and will consistently look
empty to any client, if the channel layer is distributed.

A channel layer implementing the twisted extension must also provide:

• receive_twisted(channels), a function that behaves like receive but that returns a Twisted Deferred
that eventually returns either (channel, message) or (None, None). It is not possible to run it in
nonblocking mode; use the normal receive for that.

A channel layer implementing the async extension must also provide:

• receive_async(channels), a function that behaves like receive but that fulfills the asyncio coroutine
contract to block until either a result is available or an internal timeout is reached and (None, None) is
returned. It is not possible to run it in nonblocking mode; use the normal receive for that.

Channel [U+8A9E][U+7FA9]

Channels must:

• Preserve ordering of messages perfectly with only a single reader and writer if the channel is a single-reader or
process-specific channel.

• [U+8ACB][U+52FF][U+91CD][U+8986][U+50B3][U+9001][U+76F8][U+540C][U+8A0A][U+606F][U+8D85][U+904E][U+4E00][U+6B21][U+3002]

• Never block on message send (though they may raise ChannelFull or MessageTooLarge)

• Be able to handle messages of at least 1MB in size when encoded as JSON (the implementation may use better
encoding or compression, as long as it meets the equivalent size)

• [U+6700][U+9577][U+540D][U+7A31][U+7684][U+9577][U+5EA6][U+70BA] 100
bytes[U+3002]

They should attempt to preserve ordering in all cases as much as possible, but perfect global ordering is obviously not
possible in the distributed case.

They are not expected to deliver all messages, but a success rate of at least 99.99% is expected under normal circum-
stances. Implementations may want to have a “resilience testing” mode where they deliberately drop more messages
than usual so developers can test their code’s handling of these scenarios.

Persistence

Channel layers do not need to persist data long-term; group memberships only need to live as long as a connection
does, and messages only as long as the message expiry time, which is usually a couple of minutes.

That said, if a channel server goes down momentarily and loses all data, persistent socket connections will continue to
transfer incoming data and send out new generated data, but will have lost all of their group memberships and in-flight
messages.

2.15. ASGI ([Please insert \PrerenderUnicode{\unichar{30064}} into preamble][Please insert
\PrerenderUnicode{\unichar{27493}} into preamble][Please insert
\PrerenderUnicode{\unichar{20282}} into preamble][Please insert
\PrerenderUnicode{\unichar{26381}} into preamble][Please insert
\PrerenderUnicode{\unichar{22120}} into preamble][Please insert
\PrerenderUnicode{\unichar{38296}} into preamble][Please insert
\PrerenderUnicode{\unichar{36947}} into preamble][Please insert
\PrerenderUnicode{\unichar{20171}} into preamble][Please insert
\PrerenderUnicode{\unichar{38754}} into preamble]) [Please insert
\PrerenderUnicode{\unichar{35215}} into preamble][Please insert
\PrerenderUnicode{\unichar{21123}} into preamble][Please insert
\PrerenderUnicode{\unichar{33609}} into preamble][Please insert
\PrerenderUnicode{\unichar{26696}} into preamble]

59

test Documentation, [U+91CB][U+51FA] 1.1.5

In order to avoid a nasty set of bugs caused by these half-deleted sockets, protocol servers should quit and hard restart
if they detect that the channel layer has gone down or lost data; shedding all existing connections and letting clients
reconnect will immediately resolve the problem.

If a channel layer implements the groups extension, it must persist group membership until at least the time when the
member channel has a message expire due to non-consumption, after which it may drop membership at any time. If a
channel subsequently has a successful delivery, the channel layer must then not drop group membership until another
message expires on that channel.

Channel layers must also drop group membership after a configurable long timeout after the most recent group_add
call for that membership, the default being 86,400 seconds (one day). The value of this timeout is exposed as the
group_expiry property on the channel layer.

Protocol servers must have a configurable timeout value for every connection-based protocol they serve that closes
the connection after the timeout, and should default this value to the value of group_expiry, if the channel layer
provides it. This allows old group memberships to be cleaned up safely, knowing that after the group expiry the
original connection must have closed, or is about to be in the next few seconds.

It’s recommended that end developers put the timeout setting much lower - on the order of hours or minutes - to
enable better protocol design and testing. Even with ASGI’s separation of protocol server restart from business logic
restart, you will likely need to move and reprovision protocol servers, and making sure your code can cope with this
is important.

[U+8A0A][U+606F][U+683C][U+5F0F]

These describe the standardized message formats for the protocols this specification supports. All messages are dicts
at the top level, and all keys are required unless explicitly marked as optional. If a key is marked optional, a default
value is specified, which is to be assumed if the key is missing. Keys are unicode strings.

The one common key across all protocols is reply_channel, a way to indicate the client-specific channel to send
responses to. Protocols are generally encouraged to have one message type and one reply channel type to ensure
ordering.

A reply_channel should be unique per connection. If the protocol in question can have any server service a
response - e.g. a theoretical SMS protocol - it should not have reply_channel attributes on messages, but instead
a separate top-level outgoing channel.

Messages are specified here along with the channel names they are expected on; if a channel name can vary, such as
with reply channels, the varying portion will be represented by !, such as http.response!, which matches the
format the new_channel callable takes.

There is no label on message types to say what they are; their type is implicit in the channel name they are received on.
Two types that are sent on the same channel, such as HTTP responses and response chunks, are distinguished apart by
their required fields.

Message formats can be found in the sub-specifications:

[U+5354][U+8B70][U+683C][U+5F0F][U+6307][U+5357]

Message formats for protocols should follow these rules, unless a very good performance or implementation reason is
present:

• reply_channel should be unique per logical connection, and not per logical client.

• If the protocol has server-side state, entirely encapsulate that state in the protocol server; do not require the
message consumers to use an external state store.

• If the protocol has low-level negotiation, keepalive or other features, handle these within the protocol server and
don’t expose them in ASGI messages.

60 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

• If the protocol has guaranteed ordering and does not use a specific channel for a given connection (as HTTP
does for body data), ASGI messages should include an order field (0-indexed) that preserves the ordering as
received by the protocol server (or as sent by the client, if available). This ordering should span all message
types emitted by the client - for example, a connect message might have order 0, and the first two frames order
1 and 2.

• If the protocol is datagram-based, one datagram should equal one ASGI message (unless size is an issue)

[U+8FD1][U+4F3C][U+65BC][U+5168][U+7403][U+8A02][U+8CFC]

While maintaining true global (across-channels) ordering of messages is entirely unreasonable to expect of many
implementations, they should strive to prevent busy channels from overpowering quiet channels.

For example, imagine two channels, busy, which spikes to 1000 messages a second, and quiet, which gets one
message a second. There’s a single consumer running receive(['busy', 'quiet'])which can handle around
200 messages a second.

In a simplistic for-loop implementation, the channel layer might always check busy first; it always has messages
available, and so the consumer never even gets to see a message from quiet, even if it was sent with the first batch
of busy messages.

A simple way to solve this is to randomize the order of the channel list when looking for messages inside the channel
layer; other, better methods are also available, but whatever is chosen, it should try to avoid a scenario where a message
doesn’t get received purely because another channel is busy.

[U+5B57][U+4E32][U+548C] Unicode

In this document, and all sub-specifications, byte string refers to str on Python 2 and bytes on Python 3. If this
type still supports Unicode codepoints due to the underlying implementation, then any values should be kept within
the 0 - 255 range.

Unicode string refers to unicode on Python 2 and str on Python 3. This document will never specify just string -
all strings are one of the two exact types.

Some serializers, such as json, cannot differentiate between byte strings and unicode strings; these should include
logic to box one type as the other (for example, encoding byte strings as base64 unicode strings with a preceding
special character, e.g. U+FFFF).

[U+8DEF][U+5F91][U+548C][U+7FA4][U+7D44][U+540D][U+7A31][U+7686][U+70BA]Unicode[U+5B57][U+4E32][U+FF0C][U+4E14][U+984D][U+5916][U+9650][U+5236][U+53EA][U+4F7F][U+7528][U+4EE5][U+4E0B][U+6587][U+5B57][U+FF1A]

• ASCII[U+5B57][U+6BCD]

• [U+5B57][U+5143][U+5F9E]”0”[U+5230]”9”

• [U+9023][U+5B57][U+865F]”-“

• [U+5E95][U+7DDA]”_”

• [U+53E5][U+865F]”.”

• [U+554F][U+865F]”?”([U+50C5][U+9650][U+65BC][U+55AE][U+8B80][U+8005][U+8DEF][U+5F91][U+540D][U+7A31][U+FF0C][U+4E14][U+6BCF][U+500B][U+540D][U+7A31][U+9650][U+7528][U+4E00][U+6B21])

• [U+9A5A][U+5606][U+865F]”!”([U+50C5][U+63CF][U+8FF0][U+7279][U+5B9A][U+65BC][U+9032][U+884C][U+4E2D][U+7684][U+8DEF][U+5F91][U+540D][U+7A31][U+FF0C][U+4E14][U+6BCF][U+500B][U+540D][U+7A31][U+9650][U+7528][U+4E00][U+6B21])

[U+5E38][U+898B][U+554F][U+984C]

1. Why are messages dicts, rather than a more advanced type?

[U+6211][U+5011][U+5E0C][U+671B][U+8A0A][U+606F][U+65B9][U+4FBF][U+7DE8][U+8F2F][U+FF0C][U+7279][U+5225][U+5728][U+5207][U+63DB][U+6D41][U+7A0B][U+548C][U+6A5F][U+5668][U+4ECB][U+9762][U+FF0C][U+6240][U+4EE5][U+6700][U+597D][U+662F][U+4E00][U+500B][U+7C21][U+55AE][U+53EF][U+7DE8][U+8F2F][U+7684][U+985E][U+578B][U+3002][U+6211][U+5011][U+671F][U+671B][U+67B6][U+69CB][U+5C07][U+5305][U+542B][U+6BCF][U+500B][U+7279][U+5B9A][U+5354][U+8B70][U+8A0A][U+606F][U+5728][U+5404][U+81EA][U+5B9A][U+7FA9][U+985E][U+4E2D]([U+4F8B][U+5982]‘http.request‘[U+8A0A][U+606F][U+8B8A]‘Request’[U+7269][U+4EF6])

2.15. ASGI ([Please insert \PrerenderUnicode{\unichar{30064}} into preamble][Please insert
\PrerenderUnicode{\unichar{27493}} into preamble][Please insert
\PrerenderUnicode{\unichar{20282}} into preamble][Please insert
\PrerenderUnicode{\unichar{26381}} into preamble][Please insert
\PrerenderUnicode{\unichar{22120}} into preamble][Please insert
\PrerenderUnicode{\unichar{38296}} into preamble][Please insert
\PrerenderUnicode{\unichar{36947}} into preamble][Please insert
\PrerenderUnicode{\unichar{20171}} into preamble][Please insert
\PrerenderUnicode{\unichar{38754}} into preamble]) [Please insert
\PrerenderUnicode{\unichar{35215}} into preamble][Please insert
\PrerenderUnicode{\unichar{21123}} into preamble][Please insert
\PrerenderUnicode{\unichar{33609}} into preamble][Please insert
\PrerenderUnicode{\unichar{26696}} into preamble]

61

test Documentation, [U+91CB][U+51FA] 1.1.5

[U+7248][U+6B0A]

[U+6B64][U+6587][U+4EF6][U+5DF2][U+653E][U+65BC][U+516C][U+6709][U+9818][U+57DF]

[U+793E][U+7FA4][U+5C08][U+6848]

[U+9019][U+4E9B][U+793E][U+7FA4][U+5C08][U+6848][U+4F7F][U+7528] Channels
[U+7CFB][U+7D71][U+518D][U+958B][U+767C]:

• Djangobot[U+FF0C][U+662F][U+4E00][U+500B][U+8207] Slack [U+806F][U+7E6B][U+7684][U+96D9][U+5411][U+4ECB][U+9762][U+4F3A][U+670D][U+5668][U+3002]

• knocker[U+FF0C][U+662F][U+4E00][U+500B][U+901A][U+7528][U+7684][U+684C][U+9762][U+901A][U+77E5][U+7CFB][U+7D71][U+3002]

• Beatserver[U+FF0C][U+662F][U+4E00][U+500B] django channels
[U+7684][U+9031][U+671F][U+5DE5][U+4F5C][U+6392][U+7A0B][U+7CFB][U+7D71][U+3002]

• cq[U+FF0C][U+662F][U+4E00][U+500B][U+7C21][U+55AE][U+7684][U+5206][U+6563][U+5F0F][U+6392][U+7A0B][U+7CFB][U+7D71][U+3002]

• Debugpannel[U+FF0C][U+662F][U+4E00][U+500B] channels [U+7684][U+9664][U+932F][U+5DE5][U+5177][U+9762][U+677F][U+3002]

[U+5982][U+679C][U+4F60][U+60F3][U+8981][U+589E][U+5217][U+60A8][U+7684][U+5C08][U+6848][U+FF0C][U+8ACB][U+767C][U+9001][U+5305][U+542B][U+5C08][U+6848][U+9023][U+7D50][U+8207][U+7C21][U+4ECB][U+7684]
PR [U+7D66][U+6211][U+5011][U+3002]

[U+8CA2][U+737B]

[U+82E5][U+4F60][U+6B63][U+5728][U+5C0B][U+627E]Channels[U+5408][U+4F5C][U+65B9][U+5F0F][U+FF0C][U+8ACB][U+7E7C][U+7E8C][U+95B1][U+8B80]-
[U+6211][U+5011][U+63D0][U+5021][U+5404][U+7A2E][U+5408][U+4F5C][U+4EFB][U+4F55][U+898F][U+6A21][U+FF0C][U+5F9E][U+65B0][U+805E][U+5230][U+7D93][U+9A57][U+8C50][U+5BCC][U+7684][U+958B][U+767C][U+4EBA][U+54E1][U+3002]

[U+6211][U+53EF][U+4EE5][U+904B][U+7528][U+5728][U+4EC0][U+9EBC][U+FF1F]

[U+6211][U+5011][U+6B63][U+5728][U+5C0B][U+627E][U+4EE5][U+4E0B][U+9818][U+57DF][U+7684][U+5E6B][U+52A9]:

• [U+6587][U+4EF6][U+8207][U+6559][U+7A0B][U+66F8][U+5BEB]

• [U+932F][U+8AA4][U+4FEE][U+6B63][U+8207][U+6E2C][U+8A66]

• Feature polish and occasional new feature design

• [U+6848][U+4F8B][U+7814][U+7A76][U+53CA][U+66F8][U+5BEB]

You can find what we’re looking to work on in the GitHub issues list for each of the Channels sub-projects:

• Channels issues, for the Django integration and overall project efforts

• Daphne issues, for the HTTP and Websocket termination

• asgiref issues, for the base ASGI library/memory backend

• asgi_redis issues, for the Redis channel backend

• asgi_rabbitmq, for the RabbitMQ channel backend

• asgi_ipc issues, for the POSIX IPC channel backend

[U+8B70][U+984C][U+4F9D][U+5C64][U+7D1A][U+5206][U+985E][U+FF1A]

• exp/beginner: Easy issues suitable for a first-time contributor.

• exp/intermediate: Moderate issues that need skill and a day or two to solve.

62 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

https://github.com/djangobot/djangobot
https://github.com/nephila/django-knocker
https://github.com/rajasimon/beatserver
https://github.com/furious-luke/django-cq
https://github.com/Krukov/django-channels-panel
https://github.com/django/channels/issues/
https://github.com/django/daphne/issues/
https://github.com/django/asgiref/issues/
https://github.com/django/asgi_redis/issues/
https://github.com/proofit404/asgi_rabbitmq/
https://github.com/django/asgi_ipc/issues/

test Documentation, [U+91CB][U+51FA] 1.1.5

• exp/advanced: Difficult issues that require expertise and potentially weeks of work.

They are also classified by type:

• documentation: Documentation issues. Pick these if you want to help us by writing docs.

• bug: A bug in existing code. Usually easier for beginners as there’s a defined thing to fix.

• enhancement: A new feature for the code; may be a bit more open-ended.

You should filter the issues list by the experience level and type of work you’d like to do, and then if you want to
take something on leave a comment and assign yourself to it. If you want advice about how to take on a bug, leave a
comment asking about it, or pop into the IRC channel at #django-channels on Freenode and we’ll be happy to
help.

The issues are also just a suggested list - any offer to help is welcome as long as it fits the project goals, but you should
make an issue for the thing you wish to do and discuss it first if it’s relatively large (but if you just found a small bug
and want to fix it, sending us a pull request straight away is fine).

[U+6211][U+662F][U+4E00][U+500B][U+521D][U+968E]
[U+5408][U+4F5C]/[U+958B][U+767C][U+4EBA][U+54E1] -
[U+6211][U+53EF][U+4EE5][U+5E6B][U+4EC0][U+9EBC][U+FF1F]

Of course! The issues labelled with exp/beginner are a perfect place to get started, as they’re usually small and
well defined. If you want help with one of them, pop into the IRC channel at #django-channels on Freenode or
get in touch with Andrew directly at andrew@aeracode.org.

[U+4F60][U+80FD][U+652F][U+4ED8][U+6211][U+7684][U+6642][U+9593][U+55CE][U+FF1F]

Thanks to Mozilla, we have a reasonable budget to pay people for their time working on all of the above sorts of tasks
and more. Generally, we’d prefer to fund larger projects (you can find these labelled as epic-project in the issues
lists) to reduce the administrative overhead, but we’re open to any proposal.

If you’re interested in working on something and being paid, you’ll need to draw up a short proposal and get in touch
with the committee, discuss the work and your history with open-source contribution (we strongly prefer that you have
a proven track record on at least a few things) and the amount you’d like to be paid.

If you’re interested in working on one of these tasks, get in touch with Andrew Godwin (andrew@aeracode.org) as a
first point of contact; he can help talk you through what’s involved, and help judge/refine your proposal before it goes
to the committee.

Tasks not on any issues list can also be proposed; Andrew can help talk about them and if they would be sensible to
do.

[U+767C][U+884C][U+7248][U+672C][U+8AAA][U+660E]

1.0.0 [U+767C][U+884C][U+516C][U+544A]

Channels 1.0.0 brings together a number of design changes, including some breaking changes, into our first fully stable
release, and also brings the databinding code out of alpha phase. It was released on 2017/01/08.

The result is a faster, easier to use, and safer Channels, including one major change that will fix almost all problems
with sessions and connect/receive ordering in a way that needs no persistent storage.

2.18. [Please insert \PrerenderUnicode{\unichar{30332}} into preamble][Please insert
\PrerenderUnicode{\unichar{34892}} into preamble][Please insert
\PrerenderUnicode{\unichar{29256}} into preamble][Please insert
\PrerenderUnicode{\unichar{26412}} into preamble][Please insert
\PrerenderUnicode{\unichar{35498}} into preamble][Please insert
\PrerenderUnicode{\unichar{26126}} into preamble]

63

mailto:andrew@aeracode.org
mailto:andrew@aeracode.org

test Documentation, [U+91CB][U+51FA] 1.1.5

It was unfortunately not possible to make all of the changes backwards compatible, though most code should not be
too affected and the fixes are generally quite easy.

You must also update Daphne to at least 1.0.0 to have this release of Channels work correctly.

[U+4E3B][U+8981][U+7279][U+5FB5]

Channels 1.0 introduces a couple of new major features.

WebSocket [U+63A5][U+53D7]/[U+62D2][U+7D55][U+6D41][U+91CF]

Rather than be immediately accepted, WebSockets now pause during the handshake while they send over a message
on websocket.connect, and your application must either accept or reject the connection before the handshake is
completed and messages can be received.

You must update Daphne to at least 1.0.0 to make this work correctly.

[U+9019][U+88E1][U+6709][U+5E7E][U+9805][U+512A][U+9EDE]:

• You can now reject WebSockets before they even finish connecting, giving appropriate error codes to browsers
and not letting the browser-side socket ever get into a connected state and send messages.

• Combined with Consumer Atomicity (below), it means there is no longer any need for the old “slight ordering”
mode, as the connect consumer must run to completion and accept the socket before any messages can be
received and forwarded onto websocket.receive.

• Any send message sent to the WebSocket will implicitly accept the connection, meaning only a limited set of
connect consumers need changes (see Backwards Incompatible Changes below)

Consumer Atomicity

Consumers will now buffer messages you try to send until the consumer completes and then send them once it exits
and the outbound part of any decorators have been run (even if an exception is raised).

This makes the flow of messages much easier to reason about - consumers can now be reasoned about as atomic blocks
that run and then send messages, meaning that if you send a message to start another consumer you’re guaranteed that
the sending consumer has finished running by the time it’s acted upon.

If you want to send messages immediately rather than at the end of the consumer, you can still do that by passing the
immediately argument:

Channel("thumbnailing-tasks").send({"id": 34245}, immediately=True)

This should be mostly backwards compatible, and may actually fix race conditions in some apps that were pre-existing.

Databinding Group/Action Overhaul

Previously, databinding subclasses had to implement group_names(instance, action) to return what groups
to send an instance’s change to of the type action. This had flaws, most notably when what was actually just a
modification to the instance in question changed its permission status so more clients could see it; to those clients, it
should instead have been “created”.

Now, Channels just calls group_names(instance), and you should return what groups can see the instance at
the current point in time given the instance you were passed. Channels will actually call the method before and after
changes, comparing the groups you gave, and sending out create, update or delete messages to clients appropriately.

64 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

Existing databinding code will need to be adapted; see the “Backwards Incompatible Changes” section for more.

Demultiplexer Overhaul

Demuliplexers have changed to remove the behaviour where they re-sent messages onto new channels without special
headers, and instead now correctly split out incoming messages into sub-messages that still look like websocket.
receive messages, and directly dispatch these to the relevant consumer.

They also now forward all websocket.connect and websocket.disconnect messages to all of their sub-
consumers, so it’s much easier to compose things together from code that also works outside the context of multiplex-
ing.

[U+66F4][U+591A][U+8CC7][U+8A0A][U+FF0C][U+8ACB][U+8A73][U+95B1][U+66F4][U+65B0][U+6587][U+4EF6][U+FF1A]doc:/generic

Delay Server

A built-in delay server, launched with manage.py rundelay, now ships if you wish to use it. It needs some extra initial
setup and uses a database for persistance; see [U+5EF6][U+9072][U+4F3A][U+670D][U+5668] for more
information.

[U+6B21][U+8981][U+4FEE][U+6B63]

• Serializers can now specify fields as __all__ to auto-include all fields, and exclude to remove certain
unwanted fields.

• runserver respects FORCE_SCRIPT_NAME

• Websockets can now be closed with a specific code by calling close(status=4000)

• enforce_ordering no longer has a slight mode (because of the accept flow changes), and is more
efficient with session saving.

• runserver respects --nothreading and only launches one worker, takes a --http-timeout option if
you want to override it from the default 60,

• A new @channel_and_http_session decorator rehydrates the HTTP session out of the channel session
if you want to access it inside receive consumers.

• Streaming responses no longer have a chance of being cached.

• request.META['SERVER_PORT'] is now always a string.

• http.disconnect now has a path key so you can route it.

• Test client now has a send_and_consume method.

Backwards Incompatible Changes

Connect Consumers

If you have a custom consumer for websocket.connect, you must ensure that it either:

• Sends at least one message onto the reply_channel that generates a WebSocket frame (either bytes or
text is set), either directly or via a group.

• Sends a message onto the reply_channel that is {"accept": True}, to accept a connection without
sending data.

2.18. [Please insert \PrerenderUnicode{\unichar{30332}} into preamble][Please insert
\PrerenderUnicode{\unichar{34892}} into preamble][Please insert
\PrerenderUnicode{\unichar{29256}} into preamble][Please insert
\PrerenderUnicode{\unichar{26412}} into preamble][Please insert
\PrerenderUnicode{\unichar{35498}} into preamble][Please insert
\PrerenderUnicode{\unichar{26126}} into preamble]

65

test Documentation, [U+91CB][U+51FA] 1.1.5

• Sends a message onto the reply_channel that is {"close": True}, to reject a connection mid-
handshake.

Many consumers already do the former, but if your connect consumer does not send anything you MUST now send an
accept message or the socket will remain in the handshaking phase forever and you’ll never get any messages.

All built-in Channels consumers (e.g. in the generic consumers) have been upgraded to do this.

You must update Daphne to at least 1.0.0 to make this work correctly.

Databinding group_names

If you have databinding subclasses, you will have implemented group_names(instance, action), which
returns the groups to use based on the instance and action provided.

Now, instead, you must implement group_names(instance), which returns the groups that can see the instance
as it is presented for you; the action results will be worked out for you. For example, if you want to only show objects
marked as “admin_only” to admins, and objects without it to everyone, previously you would have done:

def group_names(self, instance, action):
if instance.admin_only:

return ["admins"]
else:

return ["admins", "non-admins"]

Because you did nothing based on the action (and if you did, you would have got incomplete messages, hence this
design change), you can just change the signature of the method like this:

def group_names(self, instance):
if instance.admin_only:

return ["admins"]
else:

return ["admins", "non-admins"]

Now, when an object is updated to have admin_only = True, the clients in the non-admins group will get a
delete message, while those in the admins group will get an update message.

Demultiplexers

Demultiplexers have changed from using a mapping dict, which mapped stream names to channels, to using a
consumers dict which maps stream names directly to consumer classes.

You will have to convert over to using direct references to consumers, change the name of the dict, and then you can
remove any channel routing for the old channels that were in mapping from your routes.

Additionally, the Demultiplexer now forwards messages as they would look from a direct connection, meaning that
where you previously got a decoded object through you will now get a correctly-formatted websocket.receive
message through with the content as a text key, JSON-encoded. You will also now have to handle websocket.
connect and websocket.disconnect messages.

Both of these issues can be solved using the JsonWebsocketConsumer generic consumer, which will decode for
you and correctly separate connection and disconnection handling into their own methods.

66 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

1.0.1 [U+767C][U+5E03][U+8AAA][U+660E]

Channels 1.0.1 [U+662F][U+4E00][U+500B][U+4FEE][U+6B63][U+81ED][U+87F2][U+7684][U+5C0F][U+66F4][U+65B0][U+7248][U+FF0C][U+65BC]
2017/01/09 [U+767C][U+4F48][U+3002]

[U+4FEE][U+6B63][U+5167][U+5BB9]

• WebSocket [U+7684][U+901A][U+7528] views [U+73FE][U+5728][U+5728] connect handler
[U+9810][U+8A2D][U+63A5][U+53D7][U+9023][U+7DDA][U+FF0C][U+53EF][U+4EE5][U+6709][U+6BD4][U+8F03][U+597D][U+7684][U+5411][U+4E0B][U+76F8][U+5BB9][U+6027][U+3002]

[U+5411][U+4E0B][U+4E0D][U+76F8][U+5BB9][U+7684][U+4FEE][U+6B63]

[U+7121]

1.0.2 Release Notes

Channels 1.0.2 is a minor bugfix release, released on 2017/01/12.

Changes

• Websockets can now be closed from anywhere using the new WebsocketCloseException, available
as channels.exceptions.WebsocketCloseException(code=None). There is also a generic
ChannelSocketException you can base any exceptions on that, if it is caught, gets handed the current
message in a run method, so you can do custom behaviours.

• Calling Channel.send or Group.send from outside a consumer context (i.e. in tests or management
commands) will once again send the message immediately, rather than putting it into the consumer message
buffer to be flushed when the consumer ends (which never happens)

• The base implementation of databinding now correctly only calls group_names(instance), as docu-
mented.

Backwards Incompatible Changes

None

1.0.3 Release Notes

Channels 1.0.3 is a minor bugfix release, released on 2017/02/01.

Changes

• [U+8CC7][U+6599][U+5EAB][U+9023][U+7D50][U+5DF2][U+4E0D][U+6703][U+5728][U+6BCF][U+6B21][U+6E2C][U+8A66][U+5B8C][U+5F8C][U+5F37][U+5236][U+95DC][U+9589][U+3002]

• Channel sessions are not re-saved if they’re empty even if they’re marked as modified, allowing logout to work
correctly.

• WebsocketDemultiplexer now correctly does sessions for the second/third/etc. connect and disconnect handlers.

• Request reading timeouts now correctly return 408 rather than erroring out.

2.18. [Please insert \PrerenderUnicode{\unichar{30332}} into preamble][Please insert
\PrerenderUnicode{\unichar{34892}} into preamble][Please insert
\PrerenderUnicode{\unichar{29256}} into preamble][Please insert
\PrerenderUnicode{\unichar{26412}} into preamble][Please insert
\PrerenderUnicode{\unichar{35498}} into preamble][Please insert
\PrerenderUnicode{\unichar{26126}} into preamble]

67

test Documentation, [U+91CB][U+51FA] 1.1.5

• The rundelay delay server now only polls the database once per second, and this interval is configurable with
the --sleep option.

Backwards Incompatible Changes

[U+7121]

1.1.0 Release Notes

Channels 1.1.0 introduces a couple of major but backwards-compatible changes, including most notably the inclusion
of a standard, framework-agnostic JavaScript library for easier integration with your site.

[U+4E3B][U+8981][U+8B8A][U+5316]

• Channels now includes a JavaScript wrapper that wraps reconnection and multiplexing for you on the client side.
For more on how to use it, see the [U+901A][U+9053] WebSocket [U+5305][U+88DD] documentation.

• Test classes have been moved from channels.tests to channels.test to better match Django. Old im-
ports from channels.tests will continue to work but will trigger a deprecation warning, and channels.
tests will be removed completely in version 1.3.

Minor Changes & Bugfixes

• Bindings now support non-integer fields for primary keys on models.

• The enforce_ordering decorator no longer suffers a race condition where it would drop messages under
high load.

• runserver no longer errors if the staticfiles app is not enabled in Django.

Backwards Incompatible Changes

None

1.1.1 Release Notes

Channels 1.1.1 is a bugfix release that fixes a packaging issue with the JavaScript files.

Major Changes

None.

Minor Changes & Bugfixes

• The JavaScript binding introduced in 1.1.0 is now correctly packaged and included in builds.

Backwards Incompatible Changes

None.

68 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

test Documentation, [U+91CB][U+51FA] 1.1.5

1.1.2 Release Notes

Channels 1.1.2 is a bugfix release for the 1.1 series, released on April 1st, 2017.

Major Changes

None.

Minor Changes & Bugfixes

• Session name hash changed to SHA-1 to satisfy FIPS-140-2.

• scheme key in ASGI-HTTP messages now translates into request.is_secure() correctly.

• WebsocketBridge now exposes the underlying WebSocket as .socket.

Backwards Incompatible Changes

• When you upgrade all current channel sessions will be invalidated; you should make sure you disconnect all
WebSockets during upgrade.

1.1.3 Release Notes

Channels 1.1.3 is a bugfix release for the 1.1 series, released on April 5th, 2017.

Major Changes

None.

Minor Changes & Bugfixes

• enforce_ordering now works correctly with the new-style process-specific channels

• ASGI channel layer versions are now explicitly checked for version compatability

Backwards Incompatible Changes

None.

1.1.4 Release Notes

Channels 1.1.4 is a bugfix release for the 1.1 series, released on June 15th, 2017.

Major Changes

None.

2.18. [Please insert \PrerenderUnicode{\unichar{30332}} into preamble][Please insert
\PrerenderUnicode{\unichar{34892}} into preamble][Please insert
\PrerenderUnicode{\unichar{29256}} into preamble][Please insert
\PrerenderUnicode{\unichar{26412}} into preamble][Please insert
\PrerenderUnicode{\unichar{35498}} into preamble][Please insert
\PrerenderUnicode{\unichar{26126}} into preamble]

69

test Documentation, [U+91CB][U+51FA] 1.1.5

Minor Changes & Bugfixes

• Pending messages correctly handle retries in backlog situations

• Workers in threading mode now respond to ctrl-C and gracefully exit.

• request.meta['QUERY_STRING'] is now correctly encoded at all times.

• Test client improvements

• ChannelServerLiveTestCase added, allows an equivalent of the Django LiveTestCase.

• Decorator added to check Origin headers (allowed_hosts_only)

• New TEST_CONFIG setting in CHANNEL_LAYERS that allows varying of the channel layer for tests (e.g.
using a different Redis install)

Backwards Incompatible Changes

None.

1.1.5 Release Notes

Channels 1.1.5 is a packaging release for the 1.1 series, released on June 16th, 2017.

Major Changes

None.

Minor Changes & Bugfixes

• The Daphne dependency requirement was bumped to 1.3.0.

Backwards Incompatible Changes

None.

70 Chapter 2. [Please insert \PrerenderUnicode{\unichar{20027}} into preamble][Please insert
\PrerenderUnicode{\unichar{38988}} into preamble]

	專案
	[Please insert \PrerenderUnicode{ä¸»} into preamble][Please insert \PrerenderUnicode{é¡�} into preamble]
	簡短說明
	Channels 的概念
	安裝
	Getting Started with Channels
	部署
	一般消費者
	路由
	資料綁定
	通道 WebSocket 包裝
	通道層類型
	延遲伺服器
	測試消費者
	參考
	常見問題
	ASGI (異步伺服器閘道介面) 規劃草案
	社群專案
	貢獻
	發行版本說明

